Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adelaja O, Keshavarz T, Kyazze G (2013) Enhanced biodegradation of phenanthrene using different inoculum types in a microbial fuel cell. Eng Life Sci 14:218–228. doi: 10.1002/elsc.201300089
Adetutu EM, Gundry TD, Patil SS, Golneshin A, Adigun J, Bhaskarla V, Aleer S, Shahsavari E, Ross E, Ball AS (2015) Exploiting the intrinsic microbial degradative potential for field-based in situ dechlorination of trichloroethene contaminated groundwater. J Hazard Mater 300:48–57. doi: 10.1016/j.jhazmat.2015.06.055
Agamuthu P, Abioye OP, Aziz AA (2010) Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. J Hazard Mater 179:891–894. doi: 10.1016/j.jhazmat.2010.03.088
Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179. doi: 10.1007/s00792-2005-0498-4
Akbari A, Ghoshal S (2014) Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site. J Hazard Mater 280:595–602. doi: 10.1016/j.jhazmat.2014.08.016
Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881. doi: 10.1016/j.chemosphere.2013.01.075
Almansoory AF, Hasan HA, Idris M, Abdullah SRS, Anuar N (2015) Potential application of a biosurfactant in phytoremediation technology for treatment of gasoline-contaminated soil. Ecol Eng 84:113–120. doi: 10.1016/j.ecoleng.2015.08.001
Baker RS, Moore AT (2000) Optimizing the effectiveness of in situ bioventing: at sites suited to its use, bioventing often is a quick, cost-effective soil remediation method. Pollut Eng 32(7):44–47
Banitz T, Frank K, Wick LY, Harms H, Johst K (2016) Spatial metrics as indicators of biodegradation benefits from bacterial dispersal networks. Ecol Ind 60:54–63. doi: 10.1016/j.ecolind.2015.06.021
Baric M, Pierro L, Pietrangeli B, Papini MP (2014) Polyhydroxyalkanoate (PHB) as a slow-release electron donor for advanced in situ bioremediation of chlorinated solvent-contaminated aquifers. New Biotechnol 31:377–382. doi: 10.1016/j.nbt.2013.10.008
Barr D (2002) Biological methods for assessment and remediation of contaminated land: case studies. Construction Industry Research and Information Association, London
Besaltatpour A, Hajabbasi M, Khoshgoftarmanesh A, Dorostkar V (2011) Landfarming process effects on biochemical properties of petroleum-contaminated soils. Soil Sediment Contam Int J 20:234–248. doi: 10.1080/15320383.2011.546447
Bhattacharya M, Guchhait S, Biswas D, Datta S (2015) Waste lubricating oil removal in a batch reactor by mixed bacterial consortium: a kinetic study. Bioprocess Biosyst Eng 38:2095–2106. doi: 10.1007/s00449-015-1449-9
Burgess JE, Parsons SA, Stuetz RM (2001) Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63. doi: 10.1016/S0734-9750(00)00058-6
Carniato L, Schoups G, Seuntjens P, Van Nooten T, Simons Q, Bastiaens L (2012) Predicting longevity of iron permeable reactive barriers using multiple iron deactivation models. J Contam Hydrol 142:93–108. doi: 10.1016/j.jconhyd.2012.08.012
Cassidy DP, Srivastava VJ, Dombrowski FJ, Lingle JW (2015) Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil. J Hazard Mater 297:347–355. doi: 10.1016/j.jhazmat.2015.05.030
Catania V, Santisi S, Signa G, Vizzini S, Mazzola A, Cappello S, Yakimov MM, Quatrini P (2015) Intrinsic bioremediation potential of a chronically polluted marine coastal area. Mar Pollut Bull 99:138–149. doi: 10.1016/j.marpolbul.2015.07.042
Cerqueira VS, Peralba MR, Camargo FAO, Bento FM (2014) Comparison of bioremediation strategies for soil impacted with petrochemical oily sludge. Int Biodeterior Biodegradation 95:338–345. doi: 10.1016/j.ibiod.2014.08.015
Chemlal R, Abdi N, Lounici H, Drouiche N, Pauss A, Mameri N (2013) Modeling and qualitative study of diesel biodegradation using biopile process in sandy soil. Int Biodeterior Biodegradation 78:43–48. doi: 10.1016/j.ibiod.2012.12.014
Chen J, Zhou HC, Wang C, Zhu CQ, Tam NF-Y (2015) Short-term enhancement effect of nitrogen addition on microbial degradation and plant uptake of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove soil. J Hazard Mater 300:84–92. doi: 10.1016/j.jhazmat.2015.06.053
Chikere CB, Chikere BO, Okpokwasili GC (2012) Bioreactor-based bioremediation of hydrocarbon-polluted Niger Delta marine sediment, Nigeria. 3 Biotech 2:53–66. doi: 10.1007/s13205-011-0030-8
Chikere CB, Okoye AU, Okpokwasili GC (2016) Microbial community profiling of active oleophilic bacteria involved in bioreactor-based crude-oil polluted sediment treatment. J Appl Environ Microbiol 4:1–20. doi: 10.12691/jaem-4-1-1
Coulon F, Al Awadi M, Cowie W, Mardlin D, Pollard S, Cunningham C, Risdon G, Arthur P, Semple KT, Paton GI (2010) When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environ Pollut 158:3032–3040. doi: 10.1016/j.envpol.2010.06.001
da Silva LJ, Flávia Chaves Alves FC, de França FP (2012) A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Manag Res 30(10):1016–1030. doi: 10.1177/0734242X12448517
Dadrasnia A, Agamuthu P (2013) Diesel fuel degradation from contaminated soil by Dracaena reflexa using organic waste supplementation. J Jpn Petrol Inst 56:236–243. doi: 10.1627/jpi.56.236
De Pourcq K, Ayora C, García-Gutiérrez M, Missana T, Carrera J (2015) A clay permeable reactive barrier to remove Cs-137 from groundwater: column experiments. J Environ Radioact 149:36–42. doi: 10.1016/j.jenvrad.2015.06.029
de-Bashan LE, Hernandez J-P, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189. doi: 10.1016/j.apsoil.2011.09.003
Declercq I, Cappuyns V, Duclos Y (2012) Monitored natural attenuation (MNA) of contaminated soils: state of the art in Europe—a critical evaluation. Sci Total Environ 426:393–405. doi: 10.1016/j.scitotenv.2012.03.040
Delforno TP, Moura AGL, Okada DY, Sakamoto IK, Varesche MBA (2015) Microbial diversity and the implications of sulfide levels in an anaerobic reactor used to remove an anionic surfactant from laundry wastewater. Bioresour Technol 192:37–45. doi: 10.1016/j.biortech.2015.05.050
Delille D, Duval A, Pelletier E (2008) Highly efficient pilot biopiles for on-site fertilization treatment of diesel oil-contaminated sub-Antarctic soil. Cold Reg Sci Technol 54:7–18. doi: 10.1016/j.coldregions.2007.09.003
Dias RL, Ruberto L, Calabró A, Balbo AL, Del Panno MT, Mac Cormack WP (2015) Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38:677–687. doi: 10.1007/s00300-014-1630-7
Diele F, Notarnicola F, Sgura I (2002) Uniform air velocity field for a bioventing system design: some numerical results. Int J Eng Sci 40:1199–1210. doi: 10.1016/S0020-7225(02)00015-0
Dowling DN, Doty SL (2009) Improving phytoremediation through biotechnology. Curr Opin Biotechnol 20:204–206. doi: 10.1016/j.copbio.2009.03.007
Dürešová Z, Šuňovská A, Horník M, Pipíška M, Gubišová M, Gubiš J, Hostin S (2014) Rhizofiltration potential of for cadmium and zinc removal from contaminated wastewater. Chem Pap 68:1452–1462. doi: 10.2478/s11696-014-0610-2
Elias SH, Mohamed M, Nor-Anuar A, Muda K, Hassan MAHM, Othman MN, Chelliapan S (2014) Ceramic industry wastewater treatment by rhizofiltration system—application of water hyacinth bioremediation. Inst Integr Omics Appl Biotechnol J 5:6–14
Ferreira L, Cobas M, Tavares T, Sanromán MA, Pazos M (2013) Assessment of Arthrobacter viscosus as reactive medium for forming permeable reactive biobarrier applied to PAHs remediation. Environ Sci Pollut Res Int 20:7348–7354. doi: 10.1007/s11356-013-1750-6
Firmino PIM, Farias RS, Barros AN, Buarque PMC, Rodríguez E, Lopes AC, dos Santos AB (2015) Understanding the anaerobic BTEX removal in continuous-flow bioreactors for ex situ bioremediation purposes. Chem Eng J 281:272–280. doi: 10.1016/j.cej.2015.06.106
Fodelianakis S, Antoniou E, Mapelli F, Magagnini M, Nikolopoulou M, Marasco R, Barbato M, Tsiola A, Tsikopoulou I, Giaccaglia L, Mahjoubi M, Jaouani A, Amer R, Hussein E, Al-Horani FA, Benzha F, Blaghen M, Malkawi HI, Abdel-Fattah Y, Cherif A, Daffonchio D, Kalogerakis N (2015) Allochthonous bioaugmentation in ex situ treatment of crude oil-polluted sediments in the presence of an effective degrading indigenous microbiome. J Hazard Mater 287:78–86. doi: 10.1016/j.jhazmat.2015.01.038
Folch A, Vilaplana M, Amado L, Vicent R, Caminal G (2013) Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. J Hazard Mater 262:554–560. doi: 10.1016/j.jhazmat.2013.09.004
Frascari D, Zanaroli G, Danko AS (2015) In situ aerobic cometabolism of chlorinated solvents: a review. J Hazard Mater 283:382–399. doi: 10.1016/j.jhazmat.2014.09.041
Frutos FJG, Escolano O, García S, Mar Babín M, Fernández MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183:806–813. doi: 10.1016/j.jhazmat.2010.07.098
Frutos FJG, Pérez R, Escolano O, Rubio A, Gimeno A, Fernandez MD, Carbonell G, Perucha C, Laguna J (2012) Remediation trials for hydrocarbon-contaminated sludge from a soil washing process: evaluation of bioremediation technologies. J Hazard Mater 199:262–271. doi: 10.1016/j.jhazmat.2011.11.017
Fuller ME, Kruczek J, Schuster RL, Sheehan PL, Arienti PM (2003) Bioslurry treatment for soils contaminated with very high concentrations of 2,4,6-trinitrophenylmethylnitramine (tetryl). J Hazard Mater 100:245–257. doi: 10.1016/S0304-3894(03)00115-8
García Y, Ruiz C, Mena E, Villaseñor J, Cañizares P, Rodrigo MA (2014) Removal of nitrates from spiked clay soils by coupling electrokinetic and permeable reactive barrier technologies. J Chem Technol Biotechnol 90:1719–1726. doi: 10.1002/jctb.4488
García-Delgado C, Alfaro-Barta I, Eymar E (2015) Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil. J Hazard Mater 285:259–266. doi: 10.1016/j.jhazmat.2014.12.002
Gibert O, Cortina JL, de Pablo J, Ayora C (2013) Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage. Environ Sci Pollut Res Int 20:7854–7862. doi: 10.1007/s11356-013-1507-2
Gidarakos E, Aivalioti M (2007) Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site. J Hazard Mater 149:574–581. doi: 10.1016/j.jhazmat.2007.06.110
Gomez F, Sartaj M (2013) Field scale ex situ bioremediation of petroleum contaminated soil under cold climate conditions. Int Biodeterior Biodegradation 85:375–382. doi: 10.1016/j.ibiod.2013.08.003
Gomez F, Sartaj M (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeterior Biodegradation 89:103–109. doi: 10.1016/j.ibiod.2014.01.010
Gregorio SD, Azaizeh H, Lorenzi R (2013) Biostimulation of the autochthonous microbial community for the depletion of polychlorinated biphenyls (PCBs) in contaminated sediments. Environ Sci Pollut Res 20:3989–3999. doi: 10.1007/s11356-012-1350-x
Gregorio SD, Gentini A, Siracusa G, Becarelli S, Azaizeh H, Lorenzi R (2014) Phytomediated biostimulation of the autochthonous bacterial community for the acceleration of the depletion of polycyclic aromatic hydrocarbons in contaminated sediments. BioMed Res Int. doi: 10.1155/2014/891630
Grobelak A, Napora A, Kacprzak M (2015) Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecol Eng 84:22–28. doi: 10.1016/j.ecoleng.2015.07.019
Henderson AD, Demond AH (2007) Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ Eng Sci 24:401–423. doi: 10.1089/ees.2006.0071
Henderson AD, Demond AH (2013) Permeability of iron sulfide (FeS)-based materials for groundwater remediation. Water Res 47:1267–1276. doi: 10.1016/j.watres.2012.11.044
Hobson AM, Frederickson J, Dise NB (2005) CH4 and N2O from mechanically turned windrow and vermincomposting systems following in-vessel pre-treatment. Waste Manag 25:345–352. doi: 10.1016/j.wasman.2005.02.015
Höhener P, Ponsin V (2014) In situ vadose zone bioremediation. Curr Opin Biotechnol 27:1–7. doi: 10.1016/j.copbio.2013.08.018
Huang G, Liu F, Yang Y, Deng W, Li S, Huang Y, Kong X (2015) Removal of ammonium-nitrogen from groundwater using a fully passive permeable reactive barrier with oxygen-releasing compound and clinoptilolite. J Environ Manag 154:1–7. doi: 10.1016/j.jenvman.2015.02.012
Ignatius A, Arunbabu V, Neethu J, Ramasamy EV (2014) Rhizofiltration of lead using an aromatic medicinal plant Plectranthus amboinicus cultured in a hydroponic nutrient film technique (NFT) system. Environ Sci Pollut Res 21:13007–13016. doi: 10.1007/s11356-014-3204-1
Ijaz A, Shabir G, Khan QM, Afzal M (2015) Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecol Eng 84:58–66. doi: 10.1016/j.ecoleng.2015.07.025
Iori V, Pietrini F, Cheremisina A, Shevyakova NI, Radyukina N, Kuznetsov VV, Zacchini M (2013) Growth responses, metal accumulation and phytoremoval capability in Amaranthus plants exposed to nickel under hydroponics. Water Air Soil Pollut 224:1–10. doi: 10.1007/s11270-013-1450-3
Juárez-Ramírez C, Galíndez-Mayer J, Ruiz-Ordaz N, Ramos-Monroy O, Santoyo-Tepole F, Poggi-Varaldo H (2015) Steady-state inhibition model for the biodegradation of sulfonated amines in a packed bed reactor. New Biotechnol 32:379–386. doi: 10.1016/j.nbt.2014.07.010
Kao CM, Chen CY, Chen SC, Chien HY, Chen YL (2008) Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation. Chemosphere 70:1492–1499. doi: 10.1016/j.chemosphere.2007.08.029
Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122. doi: 10.1016/j.jenvman.2004.02.003
Khudur LS, Shahsavari E, Miranda AF, Morrison PD, Dayanthi Nugegoda D, Ball AS (2015) Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices. Environ Sci Pollut Res 22(14809):14819. doi: 10.1007/s11356-015-4624-2
Kim S, Krajmalnik-Brown R, Kim J-O, Chung J (2014) Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Sci Total Environ 497:250–259. doi: 10.1016/j.scitotenv.2014.08.002
Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a Beneficial Plant-Microbe Interaction. Mol Plant Microbe Interact 7:6–15. doi: 10.1094/MPMI.2004.17.1.6
Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439. doi: 10.1007/s12257-013-0193-8
Liu S-J, Zhao Z-Y, Li J, Wang J, Qi Y (2013) An anaerobic two-layer permeable reactive biobarrier for the remediation of nitrate-contaminated groundwater. Water Res 47:5977–5985. doi: 10.1016/j.watres.2013.06.028
Liu Y, Mou H, Chen L, Mirza ZA, Liu L (2015) Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: environmental factors and effectiveness. J Hazard Mater 298:83–90. doi: 10.1016/j.jhazmat.2015.05.007
M’rassi AG, Bensalah F, Gury J, Duran R (2015) Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res Int 22:15332–15346. doi: 10.1007/s11356-015-4343-8
Magalhães SMC, Jorge RMF, Castro PML (2009) Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes—a transition regime between bioventing and soil vapour extraction. J Hazard Mater 170:711–715. doi: 10.1016/j.jhazmat.2009.05.008
Maila MP, Colete TE (2004) Bioremediation of petroleum hydrocarbons through land farming: are simplicity and cost-effectiveness the only advantages? Rev Environ Sci Bio/Technol 3:349–360. doi: 10.1007/s111157-004-6653-z
Maqbool F, Wang Z, Xu Y, Zhao J, Gao D, Zhao Y-G, Bhatti ZA, Xing B (2012) Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. J Hazard Mater 237:262–269. doi: 10.1016/j.jhazmat.2012.08.038
Martínez-Pascual E, Grotenhuis T, Solanas AM, Viñas M (2015) Coupling chemical oxidation and biostimulation: effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil. J Hazard Mater 300:135–143. doi: 10.1016/j.jhazmat.2015.06.061
Meagher RB (2000) Phytoremediation of toxic elemental organic pollutants. Curr Opin Plant Biol 3:153–162. doi: 10.1016/S1369-5266(99)00054-0
Mena E, Ruiz C, Villaseñor J, Rodrigo MA, Cañizares P (2015) Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil. J Hazard Mater 283:131–139. doi: 10.1016/j.jhazmat.2014.08.069
Mench M, Schwitzguebel J-P, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res Int 16:876–900. doi: 10.1007/s11356-009-0252-z
Mesa J, Rodríguez-Llorente JD, Pajuelo E, Piedras JMB, Caviedes MA, Redondo-Gómez S, Mateos-Naranjo E (2015) Moving closer towards restoration of contaminated estuaries: bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina maritima. J Hazard Mater 300:263–271. doi: 10.1016/j.jhazmat.2015.07.006
Miguel AS, Ravanel P, Raveton M (2013) A comparative study on the uptake and translocation of organochlorines by Phragmites australis. J Hazard Mater 244:60–69. doi: 10.1016/j.jhazmat.2012.11.025
Mihopoulos PG, Suidan MT, Sayles GD (2000) Vapor phase treatment of PCE by lab-scale anaerobic bioventing. Water Res 34:3231–3237. doi: 10.1016/S0043-1354(00)00023-3
Mihopoulos PG, Suidan MT, Sayles GD, Kaskassian S (2002) Numerical modeling of oxygen exclusion experiments of anaerobic bioventing. J Contam Hydrol 58:209–220
Mohan SV, Sirisha K, Rao NC, Sarma PN, Reddy SJ (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J Hazard Mater 116:39–48. doi: 10.1016/j.jhazmat.2004.05.037
Mohan SV, Sirisha K, Rao RS, Sarma PN (2007) Bioslurry phase remediation of chlorpyrifos contaminated soil: process evaluation and optimization by Taguchi design of experimental (DOE) methodology. Ecotoxicol Environ Saf 68:252–262. doi: 10.1016/j.ecoenv.2007.06.002
Moreira ITA, Oliveira OMC, Triguis JA, Queiroz AFS, Barbosa RM, Anjos JASA, Reyes CY, Silva CS, Trindade MCLF, Rios MC (2013) Evaluation of the effects of metals on biodegradation of total petroleum hydrocarbons. Microchem J 110:215–220. doi: 10.1016/j.microc.2013.03.020
Mumford KA, Rayner JL, Snape I, Stevens GW (2014) Hydraulic performance of a permeable reactive barrier at Casey Station, Antarctica. Chemosphere 117:223–231. doi: 10.1016/j.chemosphere.2014.06.091
Mustafa YA, Abdul-Hameed HM, Razak ZA (2015) Biodegradation of 2,4-dichlorophenoxyacetic acid contaminated soil in a roller slurry bioreactor. Clean-Soil Air Water 43:1115–1266. doi: 10.1002/clen.201400623
Nikolopoulou M, Pasadakis N, Norf H, Kalogerakis N (2013) Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Mar Pollut Bull 77:37–44. doi: 10.1016/j.marpolbul.2013.10.038
Obiri-Nyarko F, Grajales-Mesa SJ, Malina G (2014) An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111:243–259. doi: 10.1016/j.chemosphere.2014.03.112
Paudyn K, Rutter A, Rowe RK, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53:102–114. doi: 10.1016/j.coldregions.2007.07.006
Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142
Pavel LV, Gavrilescu M (2008) Overview of ex situ decontamination techniques for soil cleanup. Environ Eng Manag J 7:815–834
Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology (ASM) Press, Washington, pp 139–236
Piskonen R, Nyyssönen M, Rajamäki T, Itävaara M (2005) Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry. Biodegradation 16:127–134
Plangklang P, Alissara Reungsang A (2010) Bioaugmentation of carbofuran by Burkholderia cepacia PCL3 in a bioslurry phase sequencing batch reactor. Process Chem 45:230–238. doi: 10.1016/j.procbio.2009.09.013
Prokop G, Schamann M, Edelgaard I (2000) Management of contaminated sites in western Europe. European Environment Agency, Copenhagen
Ramírez EM, Jiménez CS, Camacho JV, Rodrigo MAR, Cañizares P (2015) Feasibility of coupling permeable bio-barriers and electrokinetics for the treatment of diesel hydrocarbons polluted soils. Electrochim Acta 181:192–199. doi: 10.1016/j.electacta.2015.02.201
Rayner JL, Snape I, Walworth JL, Harvey PM, Ferguson SH (2007) Petroleum–hydrocarbon contamination and remediation by microbioventing at sub-Antarctic Macquarie Island. Cold Reg Sci Technol 48:139–153. doi: 10.1016/j.coldregions.2006.11.001
Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly application of nanomaterials: nanobioremediation. J Nanoparticles. doi: 10.1155/2014/431787
Rodríguez-Rodríguez CE, Marco-Urrea E, Caminal G (2010) Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresour Technol 101:2259–2266. doi: 10.1016/j.biortech.2009.11.089
Roy M, Giri AK, Dutta S, Mukherjee P (2015) Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75:180–198. doi: 10.1016/j.envint.2014.11.010
Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55:167–173. doi: 10.1016/j.coldregions.2008.07.004
Saravanan V, Rajasimman M, Rajamohan N (2015) Performance of packed bed biofilter during transient operating conditions on removal of xylene vapour. Int J Environ Sci Technol 12:1625–1634. doi: 10.1007/s13762-014-0521-3
Schwitzguébel J-P (2015) Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. J Soils Sediments. doi: 10.1007/s11368-015-1253-9
Shah JK, Sayles GD, Suidan MT, Mihopoulos PG, Kaskassian SR (2001) Anaerobic bioventing of unsaturated zone contaminated with DDT and DNT. Water Sci Technol 43:35–42
Shannon JM, Hauser LW, Liu X, Parkin GF, Mattes TE, Just GL (2015) Partial nitritation ANAMMOX in submerged attached growth bioreactors with smart aeration at 20 °C. Environ Sci Process Impacts 17:81–89. doi: 10.1039/c4em00481g
Silva-Castro GA, Uad I, Gónzalez-López J, Fandiño CG, Toledo FL, Calvo C (2012) Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology. Clean Technol Environ Policy 14:719–726. doi: 10.1007/s10098-011-0439-0
Silva-Castro GA, Uad I, Rodríguez-Calvo A, González-López J, Calvo C (2015) Response of autochthonous microbiota of diesel polluted soils to land- farming treatments. Environ Res 137:49–58. doi: 10.1016/j.envres.2014.11.009
Smith E, Thavamani P, Ramadass K, Naidu R, Srivastava P, Megharaj M (2015) Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. Int Biodeterior Biodegradation 101:56–65. doi: 10.1016/j.ibiod.2015.03.029
Somtrakoon K, Chouychai W, Lee H (2014) Phytoremediation of anthracene and fluoranthene contaminated soil by Luffa acutangula. Maejo Int J Sci Technol 8:221–231
Sui H, Li X (2011) Modeling for volatilization and bioremediation of toluene-contaminated soil by bioventing. Chin J Chem Eng 19:340–348. doi: 10.1016/S1004-9541(11)60174-2
Sun G-D, Xu Y, Jin J-H, Zhong Z-P, Liu Y, Luo M, Liu Z-P (2012) Pilot scale ex situ bioremediation of heavily PAHs-contaminated soil by indigenous microorganisms and bioaugmentation by a PAHs-degrading and bioemulsifier-producing strain. J Hazard Mater 233:72–78. doi: 10.1016/j.jhazmat.2012.06.060
Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:1–15. doi: 10.3389/fmicb.2016.00341
Thiruvenkatachari R, Vigneswaran S, Naidu R (2008) Permeable reactive barrier for groundwater remediation. J Ind Eng Chem 14:145–156. doi: 10.1016/j.jiec.2007.10.001
Thomé A, Reginatto C, Cecchin I, Colla LM (2014) Bioventing in a residual clayey soil contaminated with a blend of biodiesel and diesel oil. J Environ Eng 140:1–6. doi: 10.1061/(ASCE)EE.1943-7870.0000863
Tiecher TL, Ceretta CA, Ferreira PAA, Lourenzi CR, Tiecher T, Girotto E, Nicoloso FT, Soriani HH, De Conti L, Mimmo T, Cesco S, Brunetto G (2016) The potential of Zea mays L. in remediating copper and zinc contaminated soils for grapevine production. Geoderma 262:52–61. doi: 10.1016/j.geoderma.2015.08.015
Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241. doi: 10.1007/s10532-010-9394-4
Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236. doi: 10.1016/j.copbio.2009.01.011
Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens R, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794. doi: 10.1007/s11356-009-0213-6
Verma JP, Jaiswal DK (2016) Book review: advances in biodegradation and bioremediation of industrial waste. Front Microbiol 6:1–2. doi: 10.3389/fmicb.2015.01555
Vogan JL, Focht RM, Clark DK, Graham SL (1999) Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater. J Hazard Mater 68:97–108. doi: 10.1016/S0304-3894(99)00033-3
Volpe A, D’Arpa S, Del Moro G, Rossetti S, Tandoi V, Uricchio VF (2012) Fingerprinting hydrocarbons in a contaminated soil from an Italian natural reserve and assessment of the performance of a low-impact bioremediation approach. Water Air Soil Pollut 223:1773–1782. doi: 10.1007/s11270-011-0982-7
Wang Z, Xu Y, Zhao J, Li F, Gao D, Xing B (2011) Remediation of petroleum contaminated soils through composting and rhizosphere degradation. J Hazard Mater 190:677–685. doi: 10.1016/j.jhazmat.2011.03.103
Wang J, Feng X, Anderson CWN, Xing Y, Shang L (2012a) Remediation of mercury contaminated sites. J Hazard Mater 221:1–18. doi: 10.1016/j.jhazmat.2012.04.035
Wang X, Wang Q, Wang S, Li F, Guo G (2012b) Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge. Bioresour Technol 111:308–315. doi: 10.1016/j.biortech.2012.01.158
Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013) Phytostimulation of poplars and Arabidopsis exposed to sliver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47:5442–5449. doi: 10.1021/es4004334
Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408. doi: 10.1007/s11104-008-9686-1
Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240. doi: 10.1016/j.chemosphere.2014.10.088
Wu Z, Bañuelos GS, Lin Z-Q, Liu Y, Yuan L, Yin X, Li M (2015) Biofortification and phytoremediation of Selenum in China. Front Plant Sci 6:1–8. doi: 10.3389/fpls.2015.00136
Xin B-P, Wu C-H, Wu C-H, Lin C-W (2013) Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead. J Hazard Mater 244:765–772. doi: 10.1016/j.jhazmat.2012.11.007
Xu P, Ma W, Han H, Jia S, Hou B (2015) Isolation of a Naphthalene-Degrading Strain from Activated Sludge and Bioaugmentation with it in a MBR Treating Coal Gasification Wastewater. Bull Environ Contam Toxicol 94:358–364. doi: 10.1007/s00128-014-1366-7
Yadav BK, Siebel MA, van Bruggen JJA (2011) Rhizofiltration of a heavy metal (Lead) containing wastewater using the wetland plant Carex pendula. Clean Soil Air Water 39:467–474. doi: 10.1002/clen.201000385
Yancheshmeh JB, Khavazi K, Pazira E, Solhi M (2011) Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium uptake by canola and barley. Afr J Microbiol Res 5:1747–1754. doi: 10.5897/AJMR10.625
Yang Y, Wang Y, Hristovski K, Westerhoff P (2015) Simultaneous removal of nanosilver and fullerene in sequencing batch reactors for biological wastewater treatment. Chemosphere 125:115–121. doi: 10.1016/j.chemosphere.2014.12.003
Yavari S, Malakahmad A, Sapari NB (2015) A review on phytoremediation of crude oil spills. Water Air Soil Pollut 226:1–18. doi: 10.1007/s11270-015-2550-z
Zangi-Kotler M, Ben-Dov E, Tiehm A, Kushmaro A (2015) Microbial community structure and dynamics in a membrane bioreactor supplemented with the flame retardant dibromoneopentyl glycol. Environ Sci Pollut Res Int 22:17615–17624. doi: 10.1007/s11356-015-4975-8