Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khảo sát tiềm năng biến đổi β-myrcene của vi khuẩn trong vùng rễ cây
Tóm tắt
Quá trình xúc tác sinh học của β-myrcene thành các hợp chất có giá trị gia tăng, với tính chất cảm quan/thần dược được nâng cao, có thể được thực hiện bằng cách sử dụng bộ máy enzym chuyên biệt của vi khuẩn biến đổi β-myrcene. Chỉ một số vi khuẩn biến đổi β-myrcene đã được nghiên cứu, điều này hạn chế sự đa dạng về các mô-đun di truyền/đường đi phân hủy có sẵn cho nghiên cứu công nghệ sinh học. Trong mô hình của chúng tôi, xuất hiện Pseudomonas sp. chủng M1, mã lõi phân hủy β-myrcene đã được xác định trong một đảo gen (GI) dài 28-kb. Sự thiếu vắng các đồng huyết gần gũi của mã di truyền liên quan đến β-myrcene đã thúc đẩy một cuộc khảo sát sinh học của vùng rễ cây sồi bần và khu vực rễ cây bạch đàn, từ 4 địa điểm địa lý ở Bồ Đào Nha, nhằm đánh giá sự đa dạng môi trường và sự phát tán của đặc điểm di truyền biến đổi β-myrcene (Myr+). Các hệ vi sinh vật đất đã được làm giàu trong các nền văn hóa bổ sung β-myrcene, từ đó các vi khuẩn biến đổi β-myrcene được phân lập, thuộc các lớp Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria và Sphingobacteriia. Từ một nhóm các chủng Myr+ đại diện bao gồm 7 giới vi khuẩn, sự sản xuất các dẫn xuất của β-myrcene đã được báo cáo trước đó trong chủng M1 được phát hiện ở Pseudomonas spp., Cupriavidus sp., Sphingobacterium sp., và Variovorax sp. Phân tích gen so sánh với bộ gen của chủng M1 phát hiện mã M1-GI trong 11 bộ gen Pseudomonas mới. Sự bảo tồn toàn bộ nucleotide của mã lõi β-myrcene đã được quan sát trên toàn bộ một vị trí 76-kb trong chủng M1 và tất cả 11 Pseudomonas spp., giống như cấu trúc của một yếu tố kết hợp và giao hợp (ICE), mặc dù được phân lập từ các môi trường khác nhau. Hơn nữa, việc đặc trưng hóa các chủng không chứa vị trí 76-kb liên quan đến Myr+ cho thấy rằng chúng có thể biến đổi β-myrcene thông qua các vị trí phân hủy thay thế, do đó trở thành nguồn enzymes và danh mục phân tử sinh học mới cho khai thác công nghệ sinh học. • Sự phân lập 150 vi khuẩn Myr+ gợi ý tính phổ biến của đặc điểm này trong vùng rễ. • Đặc điểm Myr+ lan tỏa giữa các lớp phân loại vi khuẩn khác nhau. • Mã lõi cho đặc điểm Myr+ đã được phát hiện trong một ICE mới, chỉ tìm thấy ở Pseudomonas spp.
Từ khóa
#β-myrcene #vi khuẩn biến đổi #xúc tác sinh học #Pseudomonas spp. #đặc điểm di truyền #công nghệ sinh họcTài liệu tham khảo
Adams AS, Boone CK, Bohlmann J, Raffa KF (2011) Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life histories. J Chem Ecol 37:808–817. https://doi.org/10.1007/s10886-011-9992-6
Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity GM, Kodira CD, Kyrpides N, Madupu R, Markowitz V, Tatusova T, Thomson N, White O (2008) Toward an online repository of standard operating procedures (SOPs) for (meta) genomic annotation. OMICS 12:137–141. https://doi.org/10.1089/omi.2008.0017
Aronesty E (2011) ea-utils: command-line tools for processing biological sequencing data. Available at https://github.com/ExpressionAnalysis/ea-utils
Behr A, Johnen L (2009) Myrcene as a natural base chemical in sustainable chemistry: a critical review. Chemsuschem 2:1072–1095. https://doi.org/10.1002/cssc.200900186
Bell SG, Dale A, Rees NH, Wong L-L (2010) A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol 86:163–175. https://doi.org/10.1007/s00253-009-2234-y
Berendsen RL, van Verk MC, Stringlis IA, Zamioudis C, Tommassen J, Pieterse CMJ, Bakker PAHM (2015) Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics 16:539. https://doi.org/10.1186/s12864-015-1632-z
Bevivino A, Paganin P, Bacci G, Florio A, Pellicer MS, Papaleo MC, Mengoni A, Ledda L, Fani R, Benedetti A (2014) Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region. PLoS One 9:e105515. https://doi.org/10.1371/journal.pone.0105515
Bi D, Xu Z, Harrison EM, Tai C, Wei Y, He X, Jia S, Deng Z, Rajakumar K, Ou H-Y (2011) ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res 40(Database issue):D621-6. https://doi.org/10.1093/nar/gkr846
Bicas JL, Dionísio AP, Pastore GM (2009) Bio-oxidation of terpenes: an approach for the flavor industry. Chem Rev 109:4518–4531. https://doi.org/10.1021/cr800190y
Camacho EM, Casadesús J (2002) Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol Microbiol 44:1589–1598. https://doi.org/10.1046/j.1365-2958.2002.02981.x
Casadesús J, Low D (2006) Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 70:830–856. https://doi.org/10.1128/MMBR.00016-06
Cheng X-Y, Tian X-L, Wang Y-S, Lin R-M, Mao Z-C, Chen N, Xie B-Y (2013) Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation. Sci Rep 3:1869. https://doi.org/10.1038/srep01869
Cheong TK, Oriel PJ (2000) Cloning and expression of the limonene hydroxylase of Bacillus stearothermophilus BR388 and utilization in two-phase limonene conversions. Appl Biochem Biotechnol 84–86:903–915. https://doi.org/10.1385/abab:84-86:1-9:903
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2013) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(Database issue):D633-42. https://doi.org/10.1093/nar/gkt1244
da Silva FE, Peixoto RS, Rosado AS, de Carvalho BF, Tiedje JM, da Costa Rachid CTC (2018) The microbiome of Eucalyptus roots under different management conditions and its potential for biological nitrogen fixation. Microb Ecol 75:183–191. https://doi.org/10.1007/s00248-017-1014-y
Eaton RW (1996) p-Cumate catabolic pathway in Pseudomonas putida Fl: cloning and characterization of DNA carrying the cmt operon. J Bacteriol 179:3171–3180. https://doi.org/10.1128/jb.179.10.3171-3180.1997
Eaton RW (1997) p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 178:1351–1362. https://doi.org/10.1128/jb.178.5.1351-1362.1996
Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phyther Res 21:308–323. https://doi.org/10.1002/ptr.2072
Esmaeili A, Hashemi E (2011) Biotransformation of myrcene by Pseudomonas aeruginosa. Chem Cent J 5:26. https://doi.org/10.1186/1752-153X-5-26
Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194. https://doi.org/10.1101/gr.8.3.175
Förster-Fromme K, Höschle B, Mack C, Bott M, Armbruster W, Jendrossek D (2006) Identification of genes and proteins necessary for catabolism of acyclic terpenes and leucine/isovalerate in Pseudomonas aeruginosa. Appl Environ Microbiol 72:4819–4828. https://doi.org/10.1128/AEM.00853-06
Gardener BBM, Schroeder KL, Kalloger SE, Raaijmakers JM, Thomashow LS, Weller DM (2000) Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl Environ Microbiol 66:1939–1946. https://doi.org/10.1128/aem.66.5.1939-1946.2000
Greenfield P, Duesing K, Papanicolaou A, Bauer DC (2014) Blue: correcting sequencing errors using consensus and context. Bioinformatics 30:2723–2732. https://doi.org/10.1093/bioinformatics/btu368
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010
Hawkes DB, Adams GW, Burlingame AL, de Montellano PRO, De Voss JJ (2002) Cytochrome P450cin (CYP176A), isolation, expression, and characterization. J Biol Chem 277:27725–27732. https://doi.org/10.1074/jbc.M203382200
Iurescia S, Marconi AM, Tofani D, Gambacorta A, Paternò A, Devirgiliis C, van der Werf MJ, Zennaro E (1999) Identification and sequencing of β-myrcene catabolism genes from Pseudomonas sp. strain M1. Appl Environ Microbiol 65:2871–2876
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. https://doi.org/10.1038/s41467-018-07641-9
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010
Kauderer B, Zamith H, Paumgartten FJR, Speit G, Holden HE (1991) Evaluation of the mutagenicity of β-myrcene in mammalian cells in vitro. Environ Mol Mutagen 18:28–34. https://doi.org/10.1002/em.2850180106
Kirby JE, Trempy JE, Gottesman S (1994) Excision of a P4-like cryptic prophage leads to Alp protease expression in Escherichia coli. J Bacteriol 176:2068–2081. https://doi.org/10.1128/jb.176.7.2068-2081.1994
Krings U, Berger GR (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8. https://doi.org/10.1007/s002530051129
Lee MH, Lee SW (2013) Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genom Inform 11:114–120. https://doi.org/10.5808/GI.2013.11.3.114
Lessl M, Balzer D, Pansegrau W, Lanka E (1992) Sequence similarities between the RP4 Tra2 and the Ti VirB region strongly support the conjugation model for T-DNA transfer. J Biol Chem 267:20471–20480. https://doi.org/10.1016/S0021-9258(19)88726-4
Lin C, Owen SM, Peñuelas J (2007) Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol Biochem 39:951–960. https://doi.org/10.1016/j.soilbio.2006.11.007
Lüddeke F, Harder J (2011) Enantiospecific (S)-(+)-linalool formation from beta-myrcene by linalool dehydratase-isomerase. Z Naturforsch C 66:409–412. https://doi.org/10.1515/znc-2011-7-813
Lüddeke F, Wülfing A, Timke M, Germer F, Weber J, Dikfidan A, Rahnfeld T, Linder D, Meyerdierks A, Harder J (2012) Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans. Appl Environ Microbiol 78:2128–2136. https://doi.org/10.1128/AEM.07226-11
Marinus MG, Morris NR (1975) Pleiotropic effects of a DNA adenine methylation mutation (dam-3) in Escherichia coli K12. Mutat Res Mol Mech Mutagen 28:15–26. https://doi.org/10.1016/0027-5107(75)90309-7
Matsuura R, Ukeda H, Sawamura M (2006) Tyrosinase inhibitory activity of citrus essential oils. J Agric Food Chem 54:2309–2313. https://doi.org/10.1021/jf051682i
Minoia M, Gaillard M, Reinhard F, Stojanov M, Sentchilo V, van der Meer JR (2008) Stochasticity and bistability in horizontal transfer control of a genomic island in Pseudomonas. Proc Natl Acad Sci 105:20792–20797. https://doi.org/10.1073/pnas.0806164106
Misra G, Pavlostathis SG (1997) Biodegradation kinetics of monoterpenes in liquid and soil-slurry systems. Appl Microbiol Biotechnol 47:572–577. https://doi.org/10.1007/s002530050975
Miyazaki R, Minoia M, Pradervand N, Sulser S, Reinhard F, van der Meer JR (2012) Cellular variability of RpoS expression underlies subpopulation activation of an integrative and conjugative element. PLoS Genet 8:e1002818. https://doi.org/10.1371/journal.pgen.1002818
Narushima H, Omori T, Minoda Y (1981) Microbial oxidation of β-myrcene. In: Vezina C, Singh K (eds) Advances in Biotechnology. Pergamon Press, Oxford, pp 525–531
Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 260:16122–16130. https://doi.org/10.1016/S0021-9258(17)36209-9
R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/. Accessed Feb 2023
Reis F, Soares-Castro P, Costa D, Tavares RM, Baptista P, Santos PM, Lino-Neto T (2019) Climatic impacts on the bacterial community profiles of cork oak soils. Appl Soil Ecol 143:89–97. https://doi.org/10.1016/j.apsoil.2019.05.031
Roberts GA, Grogan G, Turner NJ, Flitsch SL (2004) Nucleotide sequence of a portion of the camphor-degrading gene cluster from Rhodococcus sp. NCIMB 9784. DNA Seq 15:96–103. https://doi.org/10.1080/10425170310001656765
Ropp JD, Gunsalus IC, Sligar SG (1993) Cloning and expression of a member of a new cytochrome P-450 family: cytochrome P-450lin (CYP111) from Pseudomonas incognita. J Bacteriol 175:6028–6037. https://doi.org/10.1128/jb.175.18.6028-6037.1993
Santos PM, Sá-Correia I (2009) Adaptation to β-myrcene catabolism in Pseudomonas sp. M1: An expression proteomics analysis. Proteomics 9:5101–5111. https://doi.org/10.1002/pmic.200900325
Schwab W, Fuchs C, Huang F-C (2013) Transformation of terpenes into fine chemicals. Eur J Lipid Sci Technol 115:3–8. https://doi.org/10.1002/ejlt.201200157
Smolander A, Ketola RA, Kotiaho T, Kanerva S, Suominen K, Kitunen V (2006) Volatile monoterpenes in soil atmosphere under birch and conifers: effects on soil N transformations. Soil Biol Biochem 38:3436–3442. https://doi.org/10.1016/j.soilbio.2006.05.019
Soares-Castro P, Santos PM (2015) Deciphering the genome repertoire of Pseudomonas sp. M1 toward β-myrcene biotransformation. Genome Biol Evol 7:1–17. https://doi.org/10.1093/gbe/evu254
Soares-Castro P, Montenegro-Silva P, Heipieper HJ, Santos PM (2017) Functional characterization of a 28-kilobase catabolic island from Pseudomonas sp. strain M1 involved in biotransformation of β-myrcene and related plant-derived volatiles. Appl Environ Microbiol 83:e03112-e3116. https://doi.org/10.1128/AEM.03112-16
Soares-Castro P, Soares F, Santos PM (2021) Current advances in the bacterial toolbox for the biotechnological production of monoterpene-based aroma compounds. Molecules 26:91. https://doi.org/10.3390/molecules26010091
Song L, Pan Y, Chen S, Zhang X (2012) Structural characteristics of genomic islands associated with GMP synthases as integration hotspot among sequenced microbial genomes. Comput Biol Chem 36:62–70. https://doi.org/10.1016/j.compbiolchem.2012.01.001
Springael D, Ryngaert A, Merlin C, Toussaint A, Mergeay M (2001) Occurrence of Tn4371-related mobile elements and sequences in (chloro) biphenyl-degrading bacteria. Appl Environ Microbiol 67:42–50. https://doi.org/10.1128/AEM.67.1.42-50.2001
Steele DB, Stowers MD (1991) Techniques for selection of industrially important microorganisms. Annu Rev Microbiol 45:89–106. https://doi.org/10.1146/annurev.mi.45.100191.000513
Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10:770–781. https://doi.org/10.1016/S1044-0305(99)00047-1
Thompson ML, Marriott R, Dowle A, Grogan G (2010) Biotransformation of β-myrcene to geraniol by a strain of Rhodococcus erythropolis isolated by selective enrichment from hop plants. Appl Microbiol Biotechnol 85:721–730. https://doi.org/10.1007/s00253-009-2182-6
Torreblanca J, Casadesús J (1996) DNA adenine methylase mutants of Salmonella typhimurium and a novel Dam-regulated locus. Genetics 144:15–26. https://doi.org/10.1093/genetics/144.1.15
Toussaint A, Merlin C, Monchy S, Benotmane MA, Leplae R, Mergeay M, Springael D (2003) The biphenyl-and 4-chlorobiphenyl-catabolic transposon Tn4371, a member of a new family of genomic islands related to IncP and Ti plasmids. Appl Environ Microbiol 69:4837–4845. https://doi.org/10.1128/AEM.69.8.4837-4845.2003
Trempy JE, Kirby JE, Gottesman S (1994) Alp suppression of Lon: dependence on the slpA gene. J Bacteriol 176:2061–2067. https://doi.org/10.1128/jb.176.7.2061-2067.1994
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44(W1):W232–W235. https://doi.org/10.1093/nar/gkw256
van Den Dool H, Kratz P (1963) A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A 11:463–471. https://doi.org/10.1016/S0021-9673(01)80947-X
van der Werf MJ, Boot AM (2000) Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146:1129–1141. https://doi.org/10.1099/00221287-146-5-1129
van der Werf MJ, Swarts HJ, de Bont JAM (1999) Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl Environ Microbiol 65:2092–2102. https://doi.org/10.1128/AEM.65.5.2092-2102.1999
Vilanova C, Marín M, Baixeras J, Latorre A, Porcar M (2014) Selecting microbial strains from pine tree resin: biotechnological applications from a terpene world. PLoS One 9:e100740. https://doi.org/10.1371/journal.pone.0100740
Vokou D, Chalkos D, Karamanlidou G, Yiangou M (2002) Activation of soil respiration and shift of the microbial population balance in soil as a response to Lavandula stoechas essential oil. J Chem Ecol 28:755–768. https://doi.org/10.1023/A:1015236709767
Wallace WE (2023). Retention indices in NIST Chemistry WebBook. In: Linstrom PJ, Mallard WG (eds) NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg MD, p 20899. https://doi.org/10.18434/T4D303
Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595
Wilt FM, Miller GC, Everett RL, Hackett M (1993) Monoterpene concentrations in fresh, senescent, and decaying foliage of singleleaf pinyon (Pinus monophylla Torr. & Frem.: Pinaceae) from the western Great Basin. J Chem Ecol 19:185–194. https://doi.org/10.1007/BF00993688
Wion D, Casadesús J (2006) N6-methyl-adenine: an epigenetic signal for DNA–protein interactions. Nat Rev Microbiol 4:183. https://doi.org/10.1038/nrmicro1350
Wozniak RAF, Waldor MK (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8:552–563. https://doi.org/10.1038/nrmicro2382