Bioprospecting and characterization of temperature tolerant microalgae from Bonaire

Algal Research - Tập 50 - Trang 102008 - 2020
Robin J.P. Barten1, Rene H. Wijffels1,2, Maria J. Barbosa1
1Bioprocess Engineering & AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, the Netherlands
2Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway

Tài liệu tham khảo

Draaisma, 2013, Food commodities from microalgae, Curr. Opin. Biotechnol., 24, 169, 10.1016/j.copbio.2012.09.012 Jorquera, 2010, Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors, Bioresour. Technol., 101, 1406, 10.1016/j.biortech.2009.09.038 Wijffels, 2010, An outlook on microalgal biofuels, Science, 329, 796, 10.1126/science.1189003 Chisti, 2008, Biodiesel from microalgae beats bioethanol, Trends Biotechnol., 26, 126, 10.1016/j.tibtech.2007.12.002 Wijffels, 2010, Microalgae for the production of bulk chemicals and biofuels, Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy, 4, 287, 10.1002/bbb.215 Norsker, 2011, Microalgal production—a close look at the economics, Biotechnol. Adv., 29, 24, 10.1016/j.biotechadv.2010.08.005 Huang, 2017, Design of photobioreactors for mass cultivation of photosynthetic organisms, Engineering, 3, 318, 10.1016/J.ENG.2017.03.020 Bechet, 2010, Mechanistic modeling of broth temperature in outdoor photobioreactors, Environmental science & technology, 44, 2197, 10.1021/es903214u Ras, 2013, Temperature effect on microalgae: a crucial factor for outdoor production, Rev. Environ. Sci. Biotechnol., 12, 153, 10.1007/s11157-013-9310-6 Bernard, 2012, Validation of a simple model accounting for light and temperature effect on microalgal growth, Bioresour. Technol., 123, 520, 10.1016/j.biortech.2012.07.022 Allakhverdiev, 2008, Heat stress: an overview of molecular responses in photosynthesis, Photosynth. Res., 98, 541, 10.1007/s11120-008-9331-0 Xu, 2009, Microalgal bioreactors: challenges and opportunities, Engineering in Life Sciences, 9, 178, 10.1002/elsc.200800111 Wang, 2012, Closed photobioreactors for production of microalgal biomasses, Biotechnol. Adv., 30, 904, 10.1016/j.biotechadv.2012.01.019 Ruiz, 2016, Towards industrial products from microalgae, Energy Environ. Sci., 9, 3036, 10.1039/C6EE01493C Guiry, 2012, How many species of algae are there?, J. Phycol., 48, 1057, 10.1111/j.1529-8817.2012.01222.x Steinrücken, 2017, Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies, Algal Res., 26, 392, 10.1016/j.algal.2017.07.030 Smith-Bädorf, 2013, Bioprospecting the thermal waters of the Roman baths: isolation of oleaginous species and analysis of the FAME profile for biodiesel production, AMB Express, 3, 9, 10.1186/2191-0855-3-9 Lee, 2014, Isolation and screening of microalgae from natural habitats in the Midwestern United States of America for biomass and biodiesel sources, Journal of natural science, biology, and medicine, 5, 333, 10.4103/0976-9668.136178 Bleeke, 2014, Isolation and characterization of new temperature tolerant microalgal strains for biomass production, Energies, 7, 7847, 10.3390/en7127847 Dahlin, 2019, Development of a high-productivity, halophilic, thermotolerant microalga Picochlorum renovo, Communications Biology, 2, 1, 10.1038/s42003-019-0620-2 Nübel, 1997, PCR primers to amplify 16S rRNA genes from cyanobacteria, Appl. Environ. Microbiol., 63, 3327, 10.1128/aem.63.8.3327-3332.1997 Wan, 2011, An improved colony PCR procedure for genetic screening of Chlorella and related microalgae, Biotechnol. Lett., 33, 1615, 10.1007/s10529-011-0596-6 de Winter, 2013, The synchronized cell cycle of Neochloris oleoabundans and its influence on biomass composition under constant light conditions, Algal Res., 2, 313, 10.1016/j.algal.2013.09.001 Lourenço, 2004, Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors, Eur. J. Phycol., 39, 17, 10.1080/0967026032000157156 Hare, 2007, Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea, Mar. Ecol. Prog. Ser., 352, 9, 10.3354/meps07182 Davis, 2011, Techno-economic analysis of autotrophic microalgae for fuel production, Appl. Energy, 88, 3524, 10.1016/j.apenergy.2011.04.018 Weissman, 2018, High-light selection produces a fast-growing Picochlorum celeri, Algal Res., 36, 17, 10.1016/j.algal.2018.09.024 Abu-Rezq, 1999, Optimum production conditions for different high-quality marine algae, Hydrobiologia, 403, 97, 10.1023/A:1003725626504 Tsai, 2016, Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3, Food Chem., 192, 682, 10.1016/j.foodchem.2015.07.071 Liang, 2019, Thermosynechococcus as a thermophilic photosynthetic microbial cell factory for CO2 utilisation, Bioresour. Technol., 278, 255, 10.1016/j.biortech.2019.01.089 Krupa, 1991, Photoinhibition of photosynthesis and growth responses at different light levels in psbA gene mutants of the cyanobacterium Synechococcus, Physiol. Plant., 82, 1, 10.1111/j.1399-3054.1991.tb02895.x Benvenuti, 2015, Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation, J. Appl. Phycol., 27, 1425, 10.1007/s10811-014-0470-8 Breuer, 2012, The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains, Bioresour. Technol., 124, 217, 10.1016/j.biortech.2012.08.003 Pereira, 2013, Isolation and fatty acid profile of selected microalgae strains from the red sea for biofuel production, Energies, 6, 2773, 10.3390/en6062773 Schipper, 2019, Potential of novel desert microalgae and cyanobacteria for commercial applications and CO 2 sequestration, J. Appl. Phycol., 1 Sakhno, 2010, Variability in the fatty acid composition of rapeseed oil: classical breeding and biotechnology, Cytol. Genet., 44, 389, 10.3103/S0095452710060101