Tối Ưu Hóa Quy Trình Sinh Học Của Penicillium funiculosum NCIM 1228 Để Nâng Cao Sản Xuất Và Hiệu Suất Thủy Phân Của Cellulase Trên Biomass Lignocellulosic Từ Mía

Sugar Tech - 2023
Sambhaji B. Chavan1,2,3, Ashvini M. Shete1, Mahesh S. Dharne2,3
1Praj Matrix-R & D Center (Division of Praj Industries Limited), Pune, India
2National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, India
3Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India

Tóm tắt

Enzyme cellulase hiện là enzyme thương mại lớn thứ ba trên thế giới. Do nhu cầu của nó trong các ngành công nghiệp khác nhau như dệt may, thực phẩm, quản lý chất thải, dược phẩm, nông nghiệp, giấy bột, nhiên liệu sinh học và các lĩnh vực khác, đường cầu của nó đã tăng nhanh chóng. Phương pháp thiết kế bề mặt phản ứng (RSM) đã được sử dụng để tối ưu hóa các thành phần môi trường và các thông số quy trình trong nghiên cứu hiện tại, điều này đã thành công trong việc tăng cường sản xuất cellulase từ Penicillium funiculosum NCIM 1228. Tối ưu hóa thống kê cho sự hyperproduction của cellulase đã được tiến hành bằng cách sử dụng RSM. Phương pháp thiết kế Plackett-Burman (PBD) đã được sử dụng để khảo sát các yếu tố quan trọng của môi trường sản xuất cellulase. Tiếp theo, phương pháp thiết kế Box-Behnken (BBD) đã được sử dụng để ước lượng thống kê các giá trị tối ưu và điều kiện có ảnh hưởng đáng kể đến sản xuất cellulase. Các tổ hợp thông số tối ưu ước lượng cho sản xuất cellulase là ure (0,2%), CaCl2 (0,2%), MgSO4 (0,05%), pepton (1,5%), cellulose vi tinh thể (5,0%), cám lúa mì (2,5%), dịch kéo ngô (CSL) (2,5%), KH2PO4 (0,15%), giống (10,65%), khuấy trộn (157 rpm), pH (5,88) và nhiệt độ (29,84 °C). Kết luận, xác thực thực nghiệm dưới các điều kiện tối ưu đã phát hiện một sự gia tăng trong sản xuất 3,82- và 3,61 lần trong thử nghiệm giấy lọc (FPase) và β-glucosidase, tương ứng. Ngoài ra, sự gia tăng 1,66- và 1,57 lần trong hoạt động cụ thể của FPase và β-glucosidase cũng được quan sát thấy, trong khi hoạt độ xylanase đã tăng 3,29 lần. Hơn nữa, enzyme cho thấy hiệu suất thủy phân đạt 51,30 phần trăm trên biomass lignocellulosic từ bã mía (LCB), với liều 7 đơn vị FPase trên g cellulose. P. funiculosum NCIM 1228 mang lại lợi ích trong việc sản xuất cellulase với một hệ thống enzym cellulolytic toàn diện có thể được tổng hợp ngoại bào, do đó hoạt động như một chất xúc tác sinh học hứa hẹn cho ngành công nghiệp nhiên liệu sinh học.

Từ khóa

#cellulase #Penicillium funiculosum #tối ưu hóa quy trình sinh học #phân hủy lignocellulosic #nhiên liệu sinh học

Tài liệu tham khảo

Aanchal, N.A., D.G. Kanika, and A. Goyal. 2016. Response surface methodology for optimization of microbial cellulase production. Romanian Biotechnological Letters 21: 11832–11841.

Abdelgalil, S.A., A.M. Attia, R.M. Reyed, N.A. Soliman, and H.A. El Enshasy. 2018. Application of experimental designs for optimization the production of Alcaligenes faecalis nyso laccase. Journal of Scientific and Industrial Research 77: 713–722.

Abdullah, R., M. Tahseen, K. Nisar, A. Kaleem, M. Iqtedar, F. Saleem, and M. Aftab. 2021. Statistical optimization of cellulases by Talaromyces thermophilus utilizing Saccharum spontaneum, a novel substrate. Electronic Journal of Biotechnology 51: 79–87. https://doi.org/10.1016/j.ejbt.2021.03.007.

Adsul, M.G., K.B. Bastawde, A.J. Varma, and D.V. Gokhale. 2007. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresource Technology 98: 1467–1473. https://doi.org/10.1016/j.biortech.2006.02.036.

Albuquerque de Carvalho de, M.L., D.F. Carvalho, Gomes E. de Barros, R. Nobuyuki Maeda, L.M. Melo Santa Anna, A.M. Castro, and N. Pereira. 2014. Optimisation of cellulase production by Penicillium funiculosum in a stirred tank bioreactor using multivariate response surface analysis. Enzyme Research. https://doi.org/10.1155/2014/703291.

Andberg, M., M. Penttilä, and M. Saloheimo. 2015. Swollenin from Trichoderma reesei exhibits hydrolytic activity against cellulosic substrates with features of both endoglucanases and cellobiohydrolases. Bioresource Technology 181: 105–113. https://doi.org/10.1016/j.biortech.2015.01.024.

Anwar, Z., M. Gulfraz, M. Irshad, M. Dashtban, H. Schraft, W. Qin, M. Dashtban, et al. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International Journal of Biological Sciences 5: 578. https://doi.org/10.7150/ijbs.5.578.

Burlacu, A., F. Israel-roming, and C.P. Cornea. 2017. Fungal strains improvement for xylanase over production through physical. Agrolife Scientific Journal 6: 40–47.

Bussamra, B.C., S. Freitas, A. Carvalho, and da Costa. 2015. Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail. Bioresource Technology 187: 173–181. https://doi.org/10.1016/J.BIORTECH.2015.03.117.

Chavan, S., A. Shete, Y. Mirza, and M.S. Dharne. 2021. Investigation of cold-active and mesophilic cellulases: opportunities awaited. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02047-y.

Michael Y. Cho, and Fla. Tallahassee. 1990. Fermentation of Trichoderma reesei and apparatus therefor. United states. 89–100

Das, A., T. Paul, S.K. Halder, C. Maity, P.K.D. Mohapatra, B.R. Pati, and K.C. Mondal. 2013. Study on regulation of growth and biosynthesis of cellulolytic enzymes from newly isolated Aspergillus fumigatus ABK9. Polish Journal of Microbiology 62: 31–43. https://doi.org/10.33073/pjm-2013-004.

El-Hadi, A.A., S.A. El-Nour, A. Hammad, Z. Kamel, and M. Anwar. 2014. Optimization of cultural and nutritional conditionsfor carboxymethylcellulase productionby Aspergillus hortai. Journal of Radiation Research and Applied Sciences 7: 23–28. https://doi.org/10.1016/j.jrras.2013.11.003.

Elsayed, E.A., and N.A. Abdelwahed. 2020. Medium optimization by response surface methodology for improved cholesterol oxidase production by a newly isolated Streptomyces rochei NAM-19 strain. BioMed Research International 20: 20. https://doi.org/10.1155/2020/1870807.

Esterbauer, H., W. Steiner, I. Labudova, A. Hermann, and M. Hayn. 1991. Production of Trichoderma cellulase in laboratory and pilot scale. Bioresource Technology 36: 51–65. https://doi.org/10.1016/0960-8524(91)90099-6.

Fang, Xu., Shinichi Yano, Hiroyuki Inoue, and Shigeki Sawayama. 2009. Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. Journal of Bioscience and Bioengineering. https://doi.org/10.1016/j.jbiosc.2008.11.022.

Gao, W., E.J. Lee, S.U. Lee, J. Li, C.H. Chung, and J.W. Lee. 2012. Enhanced carboxymethylcellulase production by a newly isolated marine bacterium, Cellulophaga lytica LBH-14, using rice bran. Journal of Microbiology and Biotechnology 22: 1412–1422. https://doi.org/10.4014/jmb.1203.03009.

Garai, D., and V. Kumar. 2013. A Box-Behnken design approach for the production of xylanase by Aspergillus candidus under solid state fermentation and its application in saccharification of agro residues and Parthenium hysterophorus L. Industrial Crops and Products 44: 352–363. https://doi.org/10.1016/j.indcrop.2012.10.027.

Gautam, S.P., P.S. Bundela, A.K. Pandey, M.K. Jamaluddin Khan, and Awasthi, and S. Sarsaiya. 2011. Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnology Research International 2011: 1–8. https://doi.org/10.4061/2011/810425.

Ghose, T.K. 1987. Measurement of cellulase activities. Pure and Applied Chemistry. 59: 257–268. https://doi.org/10.1351/pac198759020257.

Ghose, T.K., and V.S. Bisaria. 1987. International union of pure commission on biotechnology measurement of hemicellulase activities part 1: Xylanases. Pure & AppIied Chemistry 59: 1739–1752. https://doi.org/10.1515/iupac.59.0054.

Irfan, M., U. Asghar, M. Nadeem, R. Nelofer, and Q. Syed. 2016. Optimization of process parameters for xylanase production by Bacillus sp. in submerged fermentation. Journal of Radiation Research and Applied Sciences 9: 139–147. https://doi.org/10.1016/j.jrras.2015.10.008.

Jabasingh, S.A., C. Valli, and Nachiyar. 2010. A new combinational statistical approach for cellulase optimization in Aspergillus nidulans. Indian Journal of Science and Technology 3: 871–878. https://doi.org/10.17485/ijst/2010/v3i8.19.

Joglekar, A.V., and N.G. Karanth. 1984. Studies on cellulase production by a mutant—penicillium funiculosum uv-49. Biotechnology and Bioengineering 26: 1079–1084. https://doi.org/10.1002/BIT.260260910.

Kang, K., S. Wang, G. Lai, G. Liu, and M. Xing. 2013. Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnology. https://doi.org/10.1186/1472-6750-13-42.

Kurt, A.S., and D. Cekmecelioglu. 2021. Bacterial cellulase production using grape pomace hydrolysate by shake-flask submerged fermentation. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01595-7.

Li, H., M. Dou, X. Wang, N. Guo, P. Kou, J. Jiao, and F. Yujie. 2021. Optimization of cellulase production by a novel endophytic fungus Penicillium oxalicum R4 isolated from Taxus cuspidata. Sustainability (switzerland) 13: 1–14. https://doi.org/10.3390/su13116006.

Maeda, R.N., M.M.P.D. Silva, L.M.M.S. Anna, and N. Pereira. 2010. Nitrogen source optimization for cellulase production by Penicillium funiculosum, using a sequential experimental design methodology and the desirability function. Applied Biochemistry and Biotechnology 161: 411–422. https://doi.org/10.1007/S12010-009-8875-6.

Malik, W.A., H.M. Khan, and S. Javed. 2021. Bioprocess optimization for enhanced production of bacterial cellulase and hydrolysis of sugarcane bagasse. Bioenergy Research. https://doi.org/10.1007/s12155-021-10259-3.

Marjamaa, K., K. Toth, P.A. Bromann, G. Szakacs, and K. Kruus. 2013. Novel penicillium cellulases for total hydrolysis of lignocellulosics. Enzyme and Microbial Technology 52: 358–369. https://doi.org/10.1016/j.enzmictec.2013.03.003.

Meng, F., L. Ma, S. Ji, W. Yang, and B. Cao. 2014. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass. Letters in Applied Microbiology 59: 306–312. https://doi.org/10.1111/lam.12276.

Mhuantong, W., V. Charoensawan, P. Kanokratana, S. Tangphatsornruang, and V. Champreda. 2015. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnology for Biofuels. https://doi.org/10.1186/s13068-015-0200-8.

Mishra, C., M. Rao, R. Seeta, M.C. Srinivasan, and V. Deshpande. 1984. Hydrolysis of lignocelluloses by penicillium funiculosum cellulase. Biotechnology and Bioengineering 26: 370–373. https://doi.org/10.1002/bit.260260412.

Ng, I.S., C.W. Li, Y.F. Yeh, P.T. Chen, J.L. Chir, C.H. Ma, Y. Su May, T.H.D. Ho, and C.G. Tong. 2009. A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13: 425–435. https://doi.org/10.1007/s00792-009-0228-4.

Ogunmolu, F.E., N.B.K. Jagadeesha, R. Kumar, P. Kumar, D. Gupta, and S.S. Yazdani. 2017. Comparative insights into the saccharification potentials of a relatively unexplored but robust Penicillium funiculosum glycoside hydrolase 7 cellobiohydrolase. Biotechnology for Biofuels 10: 71. https://doi.org/10.1186/s13068-017-0752-x.

Ogunmolu, F.E., I. Kaur, N. Pasari, M. Gupta, and S.S. Yazdani. 2018. Quantitative multiplexed profiling of Penicillium funiculosum secretome grown on polymeric cellulase inducers and glucose. Journal of Proteomics 179: 150–160. https://doi.org/10.1016/j.jprot.2018.03.025.

Ogunyewo, O.A., A. Randhawa, M. Joshi, K.K. Jain, P. Wadekar, A.A. Odaneth, A.M. Lali, and S.S. Yazdani. 2020. Engineered Penicillium funiculosum produces potent lignocellulolytic enzymes for saccharification of various pretreated biomasses. Process Biochemistry 92: 49–60. https://doi.org/10.1016/j.procbio.2020.02.029.

Parekh, S., V.A. Vinci, and R.J. Strobel. 2000. Improvement of microbial strains and fermentation processes. Applied Microbiology and Biotechnology 54: 287–301. https://doi.org/10.1007/s002530000403.

Patel, M., H.M. Patel, and S. Dave. 2019. Determination of bioethanol production potential from lignocellulosic biomass using novel Cel-5m isolated from cow rumen metagenome. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2019.10.240.

Peng, Z.Q., C. Li, Y. Lin, W. Sheng Shan, L.H. Gan, J. Liu, S.L. Yang, X.H. Zeng, and L. Lin. 2021. Cellulase production and efficient saccharification of biomass by a new mutant Trichoderma afroharzianum MEA-12. Biotechnology for biofuels. https://doi.org/10.1186/S13068-021-02072-Z.

Pérez, J., J. Muñoz-Dorado, T. De La Rubia, and J. Martínez. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology 5: 53–63. https://doi.org/10.1007/s10123-002-0062-3.

Prasanna, H.N., G. Ramanjaneyulu, and B. Rajasekhar Reddy. 2016. Optimization of cellulase production by Penicillium sp. 3 Biotech6 85: 8–25. https://doi.org/10.1007/S13205-016-0483-X.

Randhawa, A., O.A. Ogunyewo, D. Eqbal, M. Gupta, and S.S. Yazdani. 2018. Disruption of zinc finger DNA binding domain in catabolite repressor Mig1 increases growth rate, hyphal branching, and cellulase expression in hypercellulolytic fungus Penicillium funiculosum NCIM1228. Biotechnology for Biofuels 11: 15. https://doi.org/10.1186/s13068-018-1011-5.

Sambhaji, C., and C.M. Wadatkar. 2014. Screening, production, partial purification & characterization of bacterial extracellular alpha amylase enzyme. Journal of Advanced Drug Delivery (JADD) 12: 0–7.

Saravanan, P., R. Muthuvelayudham, R. Rajesh Kannan, and T. Viruthagiri. 2012. Optimization of cellulase production using Trichoderma reesei by RSM and comparison with genetic algorithm. Frontiers of Chemical Science and Engineering 6: 443–452. https://doi.org/10.1007/S11705-012-1225-1.

Sarsaiya, S., A. Jain, S.K. Awasthi, Y. Duan, M.K. Awasthi, and J. Shi. 2019. Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy, challenges and future perspectives. Bioresource Technology. https://doi.org/10.1016/j.biortech.2019.121905.

Singh, R., R. Kumar, K. Bishnoi, and N.R. Bishnoi. 2009. Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus using response surface methodology. Biochemical Engineering Journal 1: 28–35. https://doi.org/10.1016/J.BEJ.2009.08.001.

Singh, A., M. Adsul, N. Vaishnav, A. Mathur, and R.R. Singhania. 2017. Improved cellulase production by Penicillium janthinellum mutant. Indian Journal of Experimental Biology 55: 436–440.

Singhania, R.R., R.K. Sukumaran, A.K. Patel, C. Larroche, and A. Pandey. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology 46: 541–549. https://doi.org/10.1016/j.enzmictec.2010.03.010.

Soumya, P.S., M.S.K. Lakshmi, and P. Nambisan. 2016. Application of response surface methodology for the optimization of laccase production from Pleurotus ostreatus by solid state fermentation on pineapple leaf substrate. Journal of Scientific and Industrial Research 75: 306–314.

Venkatachalam, M., A. Shum-Chéong-sing, L. Dufossé, and M. Fouillaud. 2020. Statistical optimization of the physico-chemical parameters for pigment production in submerged fermentation of Talaromyces albobiverticillius 30548. Microorganisms 8: 711. https://doi.org/10.3390/MICROORGANISMS8050711.

Yan, T., I. Yun, R.J. Feng, D.B. Zhou, Y.Y. Pan, Y.F. Chen, F. Wang, L.Y. Yin, Y.D. Zhang, and J.H. Xie. 2018. Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1–14 from cassava rhizosphere. PLoS ONE 1: 14. https://doi.org/10.1371/journal.pone.0206497.

Yu, X.-B., H.-S. Yun, and Y.-M. Koo. 1998. Production of cellulase by Trichoderma reesei Rut C30 in wheat bran-containing media. Journal of Microbiology and Biotechnology 8: 208–213.

Zheng, W., X. Chen, Y. Xue, H. Jiajun, M.T. Gao, and Y.F. Tsang. 2017. The influence of soluble polysaccharides derived from rice straw upon cellulase production by Trichoderma reesei. Process Biochemistry 61:130-136. https://doi.org/10.1016/j.procbio.2017.06.007.