Nhựa sinh học từ sinh khối thải của ngành công nghiệp hàng hải và gia cầm

Springer Science and Business Media LLC - Tập 48 - Trang 1-18 - 2023
Amna Arif1, Farrukh Azeem1, Ijaz Rasul1, Muhammad Hussnain Siddique1, Muhammad Zubair1, Faizan Muneer1,2, Warda Zaheer1, Habibullah Nadeem1
1Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
2National Institute of Oceanography, Karachi, Pakistan

Tóm tắt

Nhựa tổng hợp hiện nay là một phần không thể thiếu trong cuộc sống và thường được chiết xuất từ các nguồn không tái tạo. Việc sản xuất ồ ạt và sử dụng vô tội vạ nhựa tổng hợp gây ra những mối đe dọa nghiêm trọng cho môi trường và dẫn đến các vấn đề do tính không phân hủy sinh học của chúng. Các dạng nhựa khác nhau mà con người sử dụng trong đời sống hàng ngày nên được hạn chế và thay thế bằng các vật liệu phân hủy sinh học. Để giải quyết những thách thức liên quan đến tính bền vững hoặc các vấn đề môi trường xảy ra do việc sản xuất và xử lý nhựa tổng hợp, nhựa phân hủy sinh học và thân thiện với môi trường là hết sức cần thiết. Việc sử dụng các nguồn tái tạo như keratin chiết xuất từ lông gà và chitosan từ chất thải tế bào tôm như một phương án thay thế để thu được các polymer bio-based an toàn đã thu hút được nhiều sự chú ý do những vấn đề môi trường gia tăng. Khoảng 2-5 tỷ tấn chất thải được sản xuất bởi ngành công nghiệp gia cầm và hàng hải mỗi năm, có ảnh hưởng xấu đến môi trường. Những polymer này được chấp nhận nhiều hơn và thân thiện với môi trường hơn so với nhựa truyền thống nhờ vào tính ổn định sinh học, khả năng phân hủy sinh học và các thuộc tính cơ học vượt trội. Việc thay thế bao bì nhựa tổng hợp bằng các polymer phân hủy sinh học từ sản phẩm phụ của động vật giúp giảm đáng kể thể tích chất thải phát sinh. Bài đánh giá này làm nổi bật các khía cạnh quan trọng như phân loại nhựa sinh học, các thuộc tính và việc sử dụng sinh khối thải cho việc sản xuất nhựa sinh học, cấu trúc của chúng, các thuộc tính cơ học, và nhu cầu trong các lĩnh vực công nghiệp như nông nghiệp, y sinh học và bao bì thực phẩm.

Từ khóa

#nhựa sinh học #polymer #sinh khối thải #môi trường #phân hủy sinh học #ngành công nghiệp gia cầm #ngành công nghiệp hàng hải

Tài liệu tham khảo

Abbasi K 2020 Bad science in a plastic world. J. R. Soc. Med. 113 47 Abdullah AHD, Fikriyyah AK and Furghoniyyah U 2020 Effect of chitin addition on water resistance properties of starch-based bioplastic properties. IOP Conf. Ser. Earth Environ. Sci. 483 012002 Acda MN 2010 Sustainable use of waste chicken feathers for durable and low-cost building materials for tropical climates; in Sustainable agriculture: Technology, planning, and management (Eds) A Salazar and I Rios (Nova Science Publishers, Inc.) pp 353–366 Ahmed S, Annu, Ali A, et al. 2018 A review on chitosan-centered scaffolds and their applications in tissue engineering. Int. J. Biol. Macromol. 116 849–862 Alashwal BY, Saad Bala M, Gupta A, et al. 2020 Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: A comparative analysis. J. King Saud Univ. Sci. 32 853–857 Aluigi A, Zoccola M, Vineis C, et al. 2007 Study on the structure and properties of wool keratin regenerated from formic acid. Int. J. Biol. Macromol. 41 266–273 Aluigi A, Vineis C, Varesano A, et al. 2008 Structure and properties of keratin/polyethylene oxide blend nanofibres. Eur. Polym. J. 44 2465–2475 Amin MR, Anannya FR, Mahmud MA, et al. 2019 Esterification of starch in search of a biodegradable thermoplastic material. J. Polym. Res. 27 3 Arikan EB and Ozsoy HD 2015 A review: Investigation of bioplastics. J. Civ. Eng. Archit. 9 188–192 Avérous L and Pollet E 2012 Environmental silicate nano-biocomposites. Green Energy Technol. 50 1–443 Babu RP, O’Connor K and Seeram R 2013 Current progress on bio-based polymers and their future trends. Prog. Biomater. 2 8 Barone JR, Schmidt WF and Liebner CFE 2005 Thermally processed keratin films. J. Appl. Polym. Sci. 97 1644–1651 Bhuvaneshwari S, Sruthi D, Sivasubramanian V, et al. 2011 Development and characterization of chitosan film. Int. J. Eng. Res. Appl. 1 292–299 Butler BL, Vergano PJ, Testin RF, et al. 1996 Mechanical and barrier properties of edible chitosan films as affected by composition and storage. J. Food Sci. 61 953–956 Campos CA, Gerschenson LN and Flores SK 2011 Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol. 4 849–875 Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, et al. 2016 Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 107 333–366 Chen CH and Lai LS 2008 Mechanical and water vapor barrier properties of tapioca starch/decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocoll. 22 1584–1595 Cheung RCF., Ng TB, Wong JH, et al. 2015 Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs 13 5156–5186 de Morais Lima M, Bianchini D, Dias AG, et al. 2017 Biodegradable films based on chitosan, xanthan gum, and fish protein hydrolysate. J. Appl. Polym. Sci. 134 44899 Dean K, Sangwan P, Way C, et al. 2013 Glycerol plasticized chitosan: A study of biodegradation via carbon dioxide evolution and nuclear magnetic resonance. Polym. Degrad. Stab. 98 1236–1246 Deivasigamani B and Alagappan KM 2008 Industrial application of keratinase and soluble proteins from feather keratins. J. Environ. Biol. 29 933–936 Dekker RFH, Queiroz EAIF, Cunha MAA, et al. 2019 Botryosphaeran – A fungal exopolysaccharide of the (1→3)(1→6)-β-D-glucan kind: structure and biological functions; in Extracellular sugar-based biopolymers matrices. Biologically-inspired systems volume 12 (Eds) E Cohen and H Merzendorfer (Springer) pp 433–484 Demirbas A 2007 Biodegradable plastics from renewable resources. Energy Sources A Recovery Util. Environ. Effects 29 419–424 Dias GJ, Mahoney P, Swain M, et al. 2010 Keratin-hydroxyapatite composites: Biocompatibility, osseointegration, and physical properties in an ovine model. J. Biomed. Mater. Res. A 95 1084–1095 Dou Y, Zhang B, He M, et al. 2016 The structure, tensile properties, and water resistance of hydrolyzed feather keratin-based bioplastics. Chinese J. Chem. Eng. 24 415–420 Duan J, Reddy KO, Ashok B, et al. 2016 Effects of spent tea leaf powder on the properties and functions of cellulose green composite films. J. Environ. Chem. Eng. 4 440–448 Epure V, Griffon M, Pollet E, et al. 2011 Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydr. Polym. 83 947–952 Fakhoury FM, Maria Martelli S, Canhadas Bertan L, et al. 2012 Edible films made from blends of manioc starch and gelatin - Influence of different types of plasticizers and different levels of macromolecules on their properties. LWT Food Sci. Technol. 49 149–154 Fernández-d’Arlas B 2019 Tough and functional cross-linked bioplastics from sheep wool keratin. Sci. Rep. 9 14810 Fernando LAT, Poblete MRS, Ongkiko AGM, et al. 2016 Chitin extraction and synthesis of chitin-based polymer films from Philippine blue swimming crab (Portunus pelagicus) shells. Procedia Chem. 19 462–468 Ferreira ARV, Alves VD and Coelhoso IM 2016 Polysaccharide-based membranes in food packaging applications. Membranes 6 22 Freitas F, Alves VD, Reis MA, et al. 2014 Microbial polysaccharide-based membranes: Current and future applications. J. Appl. Polym. Sci. 131 40047 Gupta B, Revagade N and Hilborn J 2007 Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 32 455–482 Gupta A, Kamarudin NB, Chua GK, et al. 2012 Extraction of keratin protein from chicken feather bio-plastic view project extraction of keratin protein from chicken feather. J. Chem. Chem. Eng. 6 732–737 Gutiérrez TJ 2017 Chitosan applications for the food industry; in Chitosan: Derivatives, composites and applications (IntechOpen) pp 183–232 Haghighi H, Leugoue SK, Pfeifer F, et al. 2020 Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocoll. 100 105419 Hamed I, Özogul F and Regenstein JM 2016 Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci. Technol. 48 40–50 Hasan M, Rahmayani RFI and Munandar 2018 Bioplastic from chitosan and yellow pumpkin starch with castor oil as a plasticize. IOP Conf. Ser. Mater. Sci. Eng. 333 012087 Hatti-Kaul R, Nilsson LJ, Zhang B, et al. 2020 Designing biobased recyclable polymers for plastics. Trends Biotechnol 38 50–67 Hefft, D 2017 Developments and properties of plastic mimicking biopolymers for food packaging application. J. Appl. Packag. Res. 9 5 Hoeksema H, Vandekerckhove D, Verbelen J, et al. 2013 A comparative study of 1% silver sulphadiazine (Flammazine®) versus an enzyme alginogel (Flaminal®) in the treatment of partial-thickness burns. Burns 39 1234–1241 Hurley BRA, Ouzts A, Fischer J, et al. 2013 Effects of private and public label packaging on consumer purchase patterns. Packag. Technol. Sci. 29 399–412 Kamarudin NB, Sharma S, Gupta A, et al. 2017 Statistical investigation of extraction parameters of keratin from chicken feathers using Design-Expert. 3 Biotech 7 127 Kanmani P and Lim ST 2013 Development and characterization of novel probiotic-residing pullulan/starch edible films. Food Chem. 141 1041–1049 Karua CS and Sahoo A 2020 Synthesis and characterization of starch/chitosan composites. Mater. Today Proc. 33 5179–5183 Kerch G 2015 Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 46 159–166 Keshavarz T and Roy I 2010 Polyhydroxyalkanoates: Bioplastics with a green agenda. Curr. Opin. Microbiol. 13 321–326 Khosa MA and Ullah A 2013 Sustainable role of keratin biopolymer in green chemistry: A review. Invit. Innov. J. Food Process. Beverages 1 8 Khumalo M, Tesfaye T, Sithole B, et al. 2019 Possible beneficiation of waste chicken feathers via conversion into biomedical applications. Int. J. Chem. Sci. 17 298 Korniłłowicz-Kowalska T and Bohacz J 2011 Biodegradation of keratin waste: Theory and practical aspects. Waste Manag. 31 1689–1701 Kucinska JK, Magnucka EG, Oksinska MP, et al. 2014 Bioefficacy of hen feather keratin hydrolysate and compost on vegetable plant growth. Compost Sci. Util. 22 179–187 Kumar S and Thakur K 2017 Bioplastics - classification, production, and their potential food applications. J. Hill Agric. 8 118 Kumar A, Rao KM and Han SS 2018 Application of xanthan gum as a polysaccharide in tissue engineering: A review. Carbohydr. Polym. 180 128–144 Kumar S, Mukherjee A and Dutta J 2020 Chitosan-based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 97 196–209 Leceta I, Guerrero P and De La Caba K 2013 Functional properties of chitosan-based films. Carbohydr. Polym. 93 339–346 Lee SY 2000 Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49 1–14 Manni L, Ghorbel-Bellaaj O, Jellouli K, et al. 2010 Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from bacillus cereus SV1. Appl. Biochem. Biotechnol. 162 345–357 Martelli SM, Moore GRP andLaurindo JB 2006 Mechanical properties, water vapor permeability, and water affinity of feather keratin films plasticized with sorbitol. J. Polym. Environ. 14 215–222 Mohanty AK, Wibowo A, Misra M, et al. 2003 Development of renewable resource-based cellulose acetate bioplastic: Effect of process engineering on the performance of cellulosic plastics. Polym. Eng. Sci. 43 1151–1161 Mokrejš P, Huťťa M, Pavlačková J, et al. 2017 Preparation of keratin hydrolysate from chicken feathers and its application in cosmetics. J. Vis. Exp. 2017 56254 Moore GRP, Martelli SM, Gandolfo C, et al. 2006 Influence of the glycerol concentration on some physical properties of feather keratin films. Food Hydrocoll. 20 975–982 Morin-Crini N, Lichtfouse E, Torri G, et al. 2019 Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 17 1667–1692 Muneer F, Rasul I, Azeem F, et al. 2020 Microbial polyhydroxyalkanoates (PHAs): Efficient replacement of synthetic polymers. J. Polym. Environ. 28 2301–2323 Muneer F, Azam MH, Zubair M, et al. 2021a Remediation of water pollution by plastics; in Water pollution and remediation: Organic pollutants (Eds.) Inamuddin MI Ahamed and E Lichtfous (Springer Nature) pp 89–117 Muneer F, Hussain S, Sidra-tul-Muntaha, et al. 2021b Plastics versus bioplastics; in Degradation of plastics (Materials Research Forum LLC) pp 193–237 Muneer F, Nadeem H, Arif A, et al. 2021c. Bioplastics from biopolymers: An eco-friendly and sustainable solution to plastic pollution. Polym. Sci. Ser. C 63 47–63 Muneer F, Rasul I, Qasim M, et al. 2022 Optimization, production, and characterization of polyhydroxyalkanoate (PHA) from indigenously isolated novel bacteria. J. Polym. Environ. 30 3523–3533 Narancic T, Cerrone F, Beagan N, et al. 2020 Recent advances in bioplastics: Application and biodegradation. Polymers 12 920 Nayak KK and Gupta P 2015 In vitro biocompatibility study of keratin/agar scaffold for tissue engineering. Int. J. Biol. Macromol. 81 1–10 Pachapur VL, Guemiza K, Rouissi T, et al. 2016 Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. J. Chem. Technol. Biotechnol. 91 2331–2339 Pal J, Verma HO, Munka VK, et al. 2014 Biological method of chitin extraction from shrimp waste is an eco-friendly low-cost technology and its advanced application. Int. J. Fish. Aquat. Stud. 1 104–107 Pandey AR, Singh US, Momin M, et al. 2017 Chitosan: Application in tissue engineering and skin grafting. J. Polym. Res. 24 125 Pandey P, Mahendra Kumar V, De, N 2018 Chitosan in agriculture context - A review. Bull. Environ. Pharmacol. Life Sci. 7 87–96 Pathak S, Sneha C and Mathew BB 2014 Bioplastics: Its timeline based scenario and challenges. J. Polym. Biopolym. Phys. Chem. 2 84–90 Paunonen S 2013 Strength and barrier enhancements of cellophane and cellulose derivative films: A review. BioResources 8 3098–3121 Piemonte, V 2011 Bioplastic wastes: The best final disposition for energy saving. J. Polym. Environ. 19 988–994 Qi B, Yu A, Zhu S, et al. 2010 The preparation and cytocompatibility of injectable thermosensitive chitosan/poly(vinyl alcohol) hydrogel. J. Huazhong Univ. Sci. Technol. Med. Sci. 30 89–93 Rahman R 2019 Bioplastics for food packaging: A review. Int. J. Curr. Microbiol. Appl. Sci. 8 2311–2321 Ramakrishnan N, Sharma S, Gupta A, et al. 2018 Keratin-based bioplastic film from chicken feathers and its characterization. Int. J. Biol. Macromol. 111 352–358 Ramirez DOS., Carletto RA, Tonetti C, et al. 2017 Wool keratin film is plasticized by citric acid for food packaging. Food Packag. Shelf Life 12 100–106 Rasal RM, Janorkar A V and Hirt DE 2010 Poly(lactic acid) modifications. Prog. Polym. Sci. 35 338–356 Reddy N and Yang Y 2007 Structure and properties of chicken feather barbs as natural protein fibers. J. Polym. Environ. 15 81–87 Reddy N, Chen L and Yang Y 2013 Biothermoplastics from hydrolyzed and citric acid crosslinked chicken feathers. Mater. Sci. Eng. C 33 1203–1208 Rhodes CJ 2018 Plastic pollution and potential solutions. Sci. Prog. 101 207–260 Safaa E-A 2018 A review on chitosan: ecofriendly multiple potential applications in the food industry. Int. J. Adv. Life Sci. Res. 1 1–14 Saha S, Arshad M, Zubair M, et al. 2019a Keratin as a protein biopolymer; in Polymer, and composite materials (Springer International Publishing) Saha S, Zubair M, Khosa MA, et al. 2019b Keratin and chitosan biosorbents for wastewater treatment: A review. J. Polym. Environ. 27 1389–1403 Sami AJ 2010 Deletion of amino acid residues 33-46 in growth hormone alters the hydrophobicity of the molecule. African J. Biotechnol. 9 711–717 Sanyang ML, Sapuan SM, Jawaid M, et al. 2016 Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J. Food Sci. Technol. 53 326–336 Sha L, Chen Z, Chen Z, et al. 2016 Polylactic acid-based nanocomposites: Promising safe and biodegradable materials in the biomedical field. Int. J. Polym. Sci. https://doi.org/10.1155/2016/6869154 Sawyer DJ 2003 Bioprocessing - No longer a field of dreams. Macromol. Symp. 201. 271–282 Shanmugasundaram OL, Syed Zameer Ahmed K, Sujatha K, et al. 2018 Fabrication and characterization of chicken feather keratin/polysaccharides blended polymer-coated nonwoven dressing materials for wound healing applications. Mater. Sci. Eng. C 92 26–33 Shariatinia Z 2019 Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci. 263 131–194 Sharma S and Gupta A 2016 Sustainable management of keratin waste biomass: applications and future perspectives. Brazilian Arch. Biol. Technol. 59 1–14 Sharma S, Gupta A, Bin Tuan Chik SMS, et al. 2017a Dissolution and characterization of biofunctional keratin particles extracted from chicken feathers. IOP Conf. Ser. Mater. Sci. Eng. 191 012013 Sharma S, Gupta A, Saufi SM, et al. 2017b. Study of different treatment methods on chicken feather biomass. IIUM Eng. J. 18 47–55 Sharma S, Gupta A, Kumar A, et al. 2018 An efficient conversion of waste feather keratin into eco-friendly bioplastic film. Clean Technol. Environ. Policy 20 2157–2167 Sharma S, Gupta A and Kumar A 2019 Keratin: An Introduction; in Keratin as a protein biopolymer (Springer) Shubha D and Srivastava JN 2019 Polyesters, carbohydrates, and protein-based bio-plastics, their scope and applications. Int. J. Innov. Res. Sci. Eng. Technol. 8 3535–3542 Sidek IS, Fauziah S, Draman S, et al. 2019 Current development on bioplastics and its future prospects: An introductory review. iTECHMAG 1 3–8 Singh RS, Saini GK and Kennedy JF 2008 Pullulan: Microbial sources, production, and applications. Carbohydr. Polym. 73 515–531 Singh RS, Kaur N, Rana V, et al. 2017 Pullulan: A novel molecule for biomedical applications. Carbohydr. Polym. 171 102–121 Sini TK, Santhosh S and Mathew PT 2007 Study on the production of chitin and chitosan from shrimp shells by using Bacillus subtilis fermentation. Carbohydr. Res. 342 2423–2429 Sinkiewicz I, Śliwińska A, Staroszczyk H, et al. 2017 Alternative methods of preparation of soluble keratin from chicken feathers. Waste Biomass Valor. 8 1043–1048 Souza VGL., Fernando AL, Pires JRA, et al. 2017 Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crops Prod. 107 565–572 Srinivasa PC and Tharanathan RN 2007 Chitin/chitosan - Safe, eco-friendly packaging materials with multiple potential uses. Food Rev. Int. 23 53–72 Sushmitha BS, Vanitha KP and Rangaswamy BE 2016 Bioplastics - A review. Int. J. Mod. Trends Eng. Res. 3 411–413 Tang XZ, Kumar P, Alavi S, et al. 2012 Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit. Rev. Food Sci. Nutr. 52 426–442 Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E, et al. 2015 Green composites prepared from aliphatic polyesters and bast fibers. Ind. Crops Prod. 68 60–79 Tesfaye T, Sithole B, Ramjugernath, D 2018 Preparation, characterization, and application of keratin-based green biofilms from waste chicken feathers. Int. J. Chem. Sci. 16 1–16 Trinetta V and Cutter CN 2016 Pullulan: A suitable biopolymer for antimicrobial food packaging applications; in Antimicrobial food packaging (Elsevier) pp 385–397 Torres-Hernández YG, Ortega-Díaz GM, Téllez-Jurado L, et al. 2018 Biological compatibility of a polylactic acid composite reinforced with natural chitosan obtained from shrimp waste. Materials 11 1465 Trovatti E, Fernandes SCM., Rubatat L, et al. 2012 Pullulan-nanofibrillated cellulose composite films with improved thermal and mechanical properties. Compos. Sci. Technol. 72 1556–1561 Urbanek AK, Rymowicz W abd Mirończuk AM 2018 Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 102 7669–7678 Vasconcelos A and Cavaco-Paulo A 2013 The use of keratin in biomedical applications. Curr. Drug Targets 14 612–619 Vásconez MB, Flores SK, Campos CA, et al. 2009 Antimicrobial activity and physical properties of chitosan-tapioca starch-based edible films and coatings. Food Res. Int. 42 762–769 Verbeek CJR and van den Berg LE 2010. Recent developments in thermo-mechanical processing of proteinous bioplastics. Recent Patents Mater. Sci. 2 171–189 Vijayavenkataraman S, Iniyan S and Goic R 2012 A review of climate change, mitigation, and adaptation. Renew. Sustain. Energy Rev. 16 878–897 Wahyuningtyas N and Suryanto , H 2017 Analysis of biodegradation of bioplastics made of cassava starch. J. Mech. Eng. Sci. Technol. 1 24–31 Wang YX and Cao XJ 2012 Extracting keratin from chicken feathers by using a hydrophobic ionic liquid. Process Biochem. 47 896–899 Wang Q, Cai J, Zhang L, et al. 2013 A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J. Mater. Chem. A 1 6678–6686 Wattie B, Dumont MJ and Lefsrud M 2018 Synthesis and properties of feather keratin-based superabsorbent hydrogels. Waste Biomass Valorization 9 391–400 Wu J, Zhong F, Li Y, et al. 2013 Preparation and characterization of pullulan-chitosan and pullulan-carboxymethyl chitosan blended films. Food Hydrocoll. 30 82–91 Wu Z, Wu J, Peng T, et al. 2017 Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. Polymers 9 102 Xu YX, Kim KM, Hanna MA, et al. 2005 Chitosan-starch composite film: Preparation and characterization. Ind. Crops Prod. 21 185–192 Yadav M, Goswami P, Paritosh K, et al. 2019 Seafood waste: A source for preparation of commercially employable chitin/chitosan materials. Bioresour. Bioprocess. 6 8 Yang L, Paulson AT and Nickerson MT 2010 Mechanical and physical properties of calcium-treated gellan films. Food Res. Int. 43 1439–1443 Zhang Y, Rempel C and Liu Q 2014 Thermoplastic starch processing and characteristics: A review. Crit. Rev. Food Sci. Nutr. 54 1353–1370