Biophysical reviews top five: atomic force microscopy in biophysics

Toshio Ando1
1Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

Tóm tắt

AbstractSince its invention in the late 1980s, atomic force microscopy (AFM), in which a nanometer-sized tip is used to physically interrogate the properties of a surface at high resolution, has brought about scientific revolutions in both surface science and biological physics. In response to a request from the journal, I have prepared a top-five list of scientific papers that I feel represent truly landmark developments in the use of AFM in the biophysics field. This selection is necessarily limited by number (just five) and subjective (my opinion) and I offer my apologies to those not appearing in this list.

Từ khóa


Tài liệu tham khảo

Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98:12468–12472. https://doi.org/10.1073/pnas.211400898

Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog Surf Sci 83:337–437. https://doi.org/10.1016/j.progsurf.2008.09.001

Ando T, Uchihashi T, Scheuring S (2014) Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 114:3120–3188. https://doi.org/10.1021/cr4003837

Bell GI (1978) Models of the specific adhesion of cells to cells. Science 200:618–627. https://doi.org/10.1126/science.347575

Bezanilla M, Drake B, Nudler E, Kashlev M, Hansma PK, Hansma HG (1994) Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys J 67:2454–2459. https://doi.org/10.1016/S0006-3495(94)80733-7

Binnig G (1992) Force microscopy. Ultramicroscopy 42–44:7–15. https://doi.org/10.1016/0304-3991(92)90240-K

Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933. https://doi.org/10.1103/PhysRevLett.56.930

Binnig G, Gerber C, Stoll E, Albrecht TR, Quate CF (1987) Atomic resolution with atomic force microscope. Surf Sci 189–190:1–6. https://doi.org/10.1016/S0039-6028(87)80407-7

Butt H-J, Siedle P, Seifert K, Fendler K, Seeger T, Bamberg E, Weisenhorn AL, Goldie K, Engel A (1993) Scan speed limit in atomic force microscopy. J Microsc 169:75–84. https://doi.org/10.1111/j.1365-2818.1993.tb03280.x

Chtcheglova LA, Hinterdorfer P (2018) Simultaneous AFM topography and recognition imaging at the plasma membrane of mammalian cells. Semin Cell Dev Biol 73:45–56. https://doi.org/10.1016/j.semcdb.2017.08.025

Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243:1586–1589. https://doi.org/10.1126/science.2928794

Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller DJ (2017) Imaging modes of atomic force microscopy for application of molecular and cell biology. Nat Nanotechnol 12:295–307. https://doi.org/10.1038/nnano.2017.45

Erie DA, Yang G, Schultz HC, Bustamante C (1994) DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. Science 266:1562–1566. https://doi.org/10.1126/science.7985026

Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555. https://doi.org/10.1016/S0006-3495(97)78802-7

Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417. https://doi.org/10.1126/science.8153628

Guthold M, Bezanilla M, Erie DA, Jenkins B, Hansma HG, Bustamante C (1994) Following the assembly of RNA polymerase - DNA complexes in aqueous solutions with the scanning force microscope. Proc Natl Acad Sci U S A 91:12927–12931. https://doi.org/10.1073/pnas.91.26.12927

Guthold M, Zhu X, Rivetti C, Yang G, Thomson NH, Kasas S, Hansma HG, Smith B, Hansma PK, Bustamante C (1999) Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. Biophys J 77:2284–2294. https://doi.org/10.1016/S0006-3495(99)77067-0

Häberle W, Höber JKH, Ohnesorge F, Smith DPE, Binnig G (1992) In situ investigations of single living cells infected by viruses. Ultramicroscopy 42–44:1161–1167. https://doi.org/10.1016/0304-3991(92)90418-J

Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A 93:3477–3481. https://doi.org/10.1073/pnas.93.8.3477

Kasas S, Thomson NH, Smith BL, Hansma HG, Zhu X, Guthold M, Bustamante C, Kool ET, Kashlev M, Hansma PK (1997) Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36:461–468. https://doi.org/10.1021/bi9624402

Krieg M, Fläschner G, Alsteens D, Gaub BM, Roos WH, Wuite GJL, Gaub HE, Gerber C, Dufrêne YF, Müller DJ (2019) Atomic force microscopy-based mechanobiology. Nat Rev Phys 1:41–57. https://doi.org/10.1038/s42254-018-0001-7

Marti O, Drake B, Hansma PK (1987) Atomic force microscopy of liquid-covered surfaces: Atomic resolution images. Appl Phys Lett 51:484–486. https://doi.org/10.1063/1.98374

Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53:1045–1947. https://doi.org/10.1063/1.100061

Müller DJ, Dufrêne YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3:261–269. https://doi.org/10.1142/9789814287005_0028

Ohnesorge F, Heckl WM, Häberle W, Pum D, Sara M, Schindler H, Schilcher K, Kiener A, Smith DPE, Sleytr UB, Binnin G (1992) Scanning force microscopy studies of the S-layers from Bacillus coagulans E38-66, Bacillus sphaericus CCM2177 and of an antibody binding process. Ultramicroscopy 42–44:1236–1242. https://doi.org/10.1016/0304-3991(92)90429-N

Puchner EM, Gaub HE (2009) Force and function: probing proteins with AFM-based force spectroscopy. Curr Opin Struct Biol 19:605–614. https://doi.org/10.1016/j.sbi.2009.09.005

Rico F, Gonzalez L, Casuso I, Puig-Vidal M, Scheuring S (2013) High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. Science 342:741–743. https://doi.org/10.1126/science.1239764

Runel G, Lopez-Ramirez N, Chlasta J, Masse I (2021) Biomechanical properties of cancer cells. Cells 10:887. https://doi.org/10.3390/cells10040887

Stroh C, Wang H, Bash R, Ashcroft B, Nelson J, Gruber H, Lohr D, Lindsay SM, Hinterdorfer P (2004) Single-molecule recognition imaging microscopy. Proc Natl Acad Sci U S A 101:12503–12507. https://doi.org/10.1073/pnas.0403538101

Valotteau C, Sumbul F, Rico F (2019) High-speed force spectroscopy: microsecond force measurements using ultrashort cantilevers. Biophys Rev 11:689–699. https://doi.org/10.1007/s12551-019-00585-4

Vianni MB, Pietrasanta LI, Thompson JB, Chand A, Gebeshuber IC, Kindt JH, Richter M, Hansma HG, Hansma PK (2000) Probing protein-proein interactions in real time. Nat Struct Biol 7:644–647. https://doi.org/10.1038/77936

Weisenhorn AL, Khorsandi M, Kasas S, Gotzos V, Butt H-J (1993) Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4:106–113. https://doi.org/10.1088/0957-4484/4/2/006

Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 7:e46609. https://doi.org/10.1371/journal.pone.0046609

Yuan C, Chen A, Kolb P, Moy VT (2000) Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. Biochemistry 39:10219–10223. https://doi.org/10.1021/bi992715o

Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/scilica fiber surfaces studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692. https://doi.org/10.1016/0167-2584(93)90906-Y

Zhu R, Howorka S, Pröll J, Kienberger F, Preiner J, Hesse J, Ebner A, Pastushenko VP, Gruber HJ, Hinterdorfer P (2010) Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns. Nat Nanotechnol 5:788–791. https://doi.org/10.1038/nnano.2010.212