Biophotonics and Biotechnology in Pancreatic Cancer: Cyclic RGD-Peptide-Conjugated Type II Quantum Dots for in vivo Imaging

Pancreatology - Tập 10 - Trang 553-564 - 2010
Ken-Tye Yong1
1Institute for Lasers, Photonics and Biophotonics, University at Buffalo, The State University of New York, Buffalo, N.Y., USA

Tài liệu tham khảo

Yeo, 2004, Pancreatic cancer, Curr Prob Cancer, 26, 176, 10.1067/mcn.2002.129579 Hingorani, 2003, Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse, Cancer Cell, 4, 437, 10.1016/S1535-6108(03)00309-X Hruban, 2007, Precursors to pancreatic cancer, Gastroenterol Clin N Am, 36, 831, 10.1016/j.gtc.2007.08.012 Swierczynski, 2004, Analysis of novel tumor markers in pancreatic and biliary carcinomas using tissue microarrays, Hum Pathol, 35, 357, 10.1016/j.humpath.2003.10.012 Cao, 2006, Combination of integrin sirna and irradiation for breast cancer therapy, Biochem Biophys Res Commun, 351, 726, 10.1016/j.bbrc.2006.10.100 Psimadas, 2006, Study of the labeling of two novel RGD-peptidic derivatives with the precursor [99mtc(H2O)3(CO)3]+ and evaluation for early angiogenesis detection in cancer, Appl Radiat Isotopes, 64, 151, 10.1016/j.apradiso.2005.06.010 Cai, 2008, vol 45, 141 Chen, 2004, Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by pegylation, Nucl Med Biol, 31, 11, 10.1016/j.nucmedbio.2003.07.003 Dobrucki, 2007, Imaging angiogenesis, Curr Opin Biotechnol, 18, 90, 10.1016/j.copbio.2007.01.005 Chen, 2004, 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis, Nucl Med Biol, 31, 179, 10.1016/j.nucmedbio.2003.10.002 Juzenas, 2008, Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer, Adv Drug Deliv Rev, 60, 1600, 10.1016/j.addr.2008.08.004 Li, 2008, Glutathione-mediated release of functional plasmid DNA from positively charged quantum dots, Biomaterials, 29, 2776, 10.1016/j.biomaterials.2008.03.007 Yu, 2006, Water-soluble quantum dots for biomedical applications, Biochem Biophys Res Commun, 348, 781, 10.1016/j.bbrc.2006.07.160 Azzazy, 2007, From diagnostics to therapy: prospects of quantum dots, Clin Biochem, 40, 917, 10.1016/j.clinbiochem.2007.05.018 Hild, 2008, Quantum dots — nano-sized probes for the exploration of cellular and intracellular targeting, Eur J Pharmaceut Biopharmaceut, 68, 153, 10.1016/j.ejpb.2007.06.009 Santos, 2008, 773 Yong, 2006, Growth of CDSE quantum rods and multipods seeded by noble metal nanoparticles, Adv Mater, 18, 1978, 10.1002/adma.200600368 Dubertret, 2002, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 298, 1759, 10.1126/science.1077194 Pan, 2009, Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers, Biomaterials, 30, 1176, 10.1016/j.biomaterials.2008.10.039 Yong, 2007, Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells, Nano Lett, 7, 761, 10.1021/nl063031m Yong, 2008, Multiplex imaging of pancreatic cancer cells by using functionalized quantum rods, Adv Materials, 20, 1412, 10.1002/adma.200702462 Sanvicens, 2008, Multifunctional nanoparticles — properties and prospects for their use in human medicine, Trends Biotechnol, 26, 425, 10.1016/j.tibtech.2008.04.005 Terai, 2008, Fluorescent probes for bioimaging applications, Curr Opin Chem Biol, 12, 515, 10.1016/j.cbpa.2008.08.007 Wang, 2009, QD as a bifunctional cell-surface marker for both fluorescence and atomic force microscopy, Ultramicroscopy, 109, 268, 10.1016/j.ultramic.2008.11.020 Tan, 2007, Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bio-applications, J Colloid Interface Sci, 310, 464, 10.1016/j.jcis.2007.01.083 Smith, 2008, Bio-conjugated quantum dots for in vivo molecular and cellular imaging, Adv Drug Deliv Rev, 60, 1226, 10.1016/j.addr.2008.03.015 Prasad, 2004 Choi, 2007, Renal clearance of quantum dots, Nat Biotech, 25, 1165, 10.1038/nbt1340 Wang, 2007, Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS core-shell nanocrystals, J Phys Chem C, 111, 2465, 10.1021/jp066601f Schreder, 2000, CdTe/CdS clusters with ‘core-shell’ structure in colloids and films: the path of formation and thermal breakup, J Phys Chem B, 104, 1677, 10.1021/jp991468v Schöps, 2006, Recombination dynamics of CdTe/CdS core-shell nanocrystals, J Phys Chem B, 110, 2074, 10.1021/jp0557013 Bao, 2004, Enhancement effect of illumination on the photoluminescence of water-soluble CDTE nano crystals: toward highly fluorescent CdTe/CdS core-shell structure, Chem Materials, 16, 3853, 10.1021/cm049172b He, 2006, Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence, J Phys Chem B, 110, 13370, 10.1021/jp057498h Yang L, Mao H, Cao Z, Wang YA, Peng X, Wang X, Sajja HK, Wang L, Duan H, Ni C, Staley CA, Wood WC, Gao X, Nie S; Molecular imaging of pancreatic cancer in a preclinical animal tumor model using targeted multifunctional nanoparticles. Gastroenterology. In press, uncorrected proof. Cho, 2007, Long-term exposure to cdte quantum dots causes functional impairments in live cells, Langmuir, 23, 1974, 10.1021/la060093j Gao, 2004, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat Biotech, 22, 969, 10.1038/nbt994 Cai, 2006, Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects, Nano Lett, 6, 669, 10.1021/nl052405t Chen, 2008, Bio-distribution and metabolic paths of silica coated CDSEs quantum dots, Toxicol Appl Pharmacol, 230, 364, 10.1016/j.taap.2008.03.022 Gao, 2008, Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging, Bioconjugate Chem, 19, 2189, 10.1021/bc8002698 Ballou, 2004, Noninvasive imaging of quantum dots in mice, Bioconjugate Chem, 15, 79, 10.1021/bc034153y Ballou, 2007, Sentinel lymph node imaging using quantum dots in mouse tumor models, Bioconjugate Chem, 18, 389, 10.1021/bc060261j Li, 2009, In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles, Cancer Lett, 274, 319, 10.1016/j.canlet.2008.09.024 Papagiannaros A, Levchenko T, Hartner W, Mongayt D, Torchilin V; Quantum dots encapsulated in phospholipid micelles for imaging and quantification of tumors in the near-infrared region. Nanomed Nanotechnol Biol Med. In press, corrected proof. Zhang, 2009, Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice, Biomaterials, 30, 1928, 10.1016/j.biomaterials.2008.12.038 Zhang, 2007, Preparation and characterization of 99mtc(co)3-bpy-RGD complex as [alpha]v[beta]3 integrin receptor-targeted imaging agent, Appl Radiat Isotopes, 65, 70, 10.1016/j.apradiso.2006.07.013 Kennel, 2008, The fate of mab-targeted cd125mte/zns nanoparticles in vivo, Nucl Med Biol, 35, 501, 10.1016/j.nucmedbio.2008.02.001 Maysinger, 2007, Fate of micelles and quantum dots in cells, Eur J Pharmaceut Biopharmaceut, 65, 270, 10.1016/j.ejpb.2006.08.011 Su, 2009, The cytotoxicity of cadmium based, aqueous phase — synthesized, quantum dots and its modulation by surface coating, Biomaterials, 30, 19, 10.1016/j.biomaterials.2008.09.029 Erogbogbo, 2008, Biocompatible luminescent silicon quantum dots for imaging of cancer cells, ACS Nano, 2, 873, 10.1021/nn700319z