Biomineralized and chemically synthesized magnetic nanoparticles: A contrast

Frontiers of Materials Science - Tập 14 Số 4 - Trang 387-401 - 2020
Tanya Nanda1, Ankita Rathore1, Deepika Sharma1
1Institute of Nano Science and Technology, Habitat Centre, Sector 64, Mohali, 160062, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pankhurst Q, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine: The story so far. Journal of Physics D: Applied Physics, 2016, 49(50): 501002

Han L, Li S, Yang Y, et al. Comparison of magnetite nanocrystal formed by biomineralization and chemosynthesis. Journal of Magnetism and Magnetic Materials, 2007, 313(1): 236–242

Yan L, Zhang S, Chen P, et al. Magnetotactic bacteria, magnetosomes and their application. Microbiological Research, 2012, 167(9): 507–519

Alphandéry E. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Frontiers in Bioengineering and Biotechnology, 2014, 2: 5

Jacob J J, Suthindhiran K. Magnetotactic bacteria and magnetosomes — Scope and challenges. Materials Science & Engineering C: Materials for Biological Applications, 2016, 68: 919–928

Xie J, Chen K, Chen X Y. Production, modification and bioapplications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Research, 2009, 2(4): 261–278

Kahani S A, Yagini Z. A comparison between chemical synthesis magnetite nanoparticles and biosynthesis magnetite. Bioinorganic Chemistry and Applications, 2014, 2014: 384984

Kalirai S S, Bazylinski D A, Hitchcock A P. Anomalous magnetic orientations of magnetosome chains in a magnetotactic bacterium: Magnetovibrio blakemorei strain MV-1. PLoS One, 2013, 8(1): e53368

Wang L, Sun Y, Li Z, et al. Bottom-up synthesis and sensor applications of biomimetic nanostructures. Materials, 2016, 9(1): 53

Priyadarshana G, Kottegoda N, Senaratne A, et al. Synthesis of magnetite nanoparticles by top-down approach from a high purity ore. Journal of Nanomaterials, 2015, 2015: 1–8

Huang J, Li Y, Orza A, et al. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Advanced Functional Materials, 2016, 26(22): 3818–3836

Dutz S, Hergt R, Mürbe J, et al. Hysteresis losses of magnetic nanoparticle powders in the single domain size range. Journal of Magnetism and Magnetic Materials, 2007, 308(2): 305–312

Lu A H, Salabas E L, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 2007, 46(8): 1222–1244

Woo K, Hong J, Choi S, et al. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chemistry of Materials, 2004, 16(14): 2814–2818

Faraji M, Yamini Y, Rezaee M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. Journal of the Iranian Chemical Society, 2010, 7(1): 1–37

Tartaj P, Veintemillas-Verdaguer S, Gonzalez-Carreño T, et al. Preparation of magnetic nanoparticles for applications in biomedicine. In: Southern P, Darton N J, Ionescu A, et al., eds. Magnetic Nanoparticles in Biosensing and Medicine. Cambridge, UK: Cambridge University Press, 2019, 52–67

Nejati-Koshki K, Mesgari M, Ebrahimi E, et al. Synthesis and in vitro study of cisplatin-loaded Fe3O4 nanoparticles modified with PLGA-PEG6000 copolymers in treatment of lung cancer. Journal of Microencapsulation, 2014, 31(8): 815–823

Butter K, Kassapidou K, Vroege G J, et al. Preparation and properties of colloidal iron dispersions. Journal of Colloid and Interface Science, 2005, 287(2): 485–495

Mason T J, Lorimer J P. Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2002

Schüler D, Frankel R B. Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Applied Microbiology and Biotechnology, 1999, 52(4): 464–473

Sun J B, Zhao F, Tang T, et al. High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Applied Microbiology and Biotechnology, 2008, 79(3): 389–397

Moisescu C, Bonneville S, Staniland S, et al. Iron uptake kinetics and magnetosome formation by Magnetospirillum gryphiswaldense as a function of pH, temperature and dissolved iron availability. Geomicrobiology Journal, 2011, 28(7): 590–600

Komeili A. Molecular mechanisms of magnetosome formation. Annual Review of Biochemistry, 2007, 76(1): 351–366

Lowenstam H A. Minerals formed by organisms. Science, 1981, 211(4487): 1126–1131

Penninga I, de Waard H, Moskowitz B M, et al. Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field. Journal of Magnetism and Magnetic Materials, 1995, 149(3): 279–286

Arakaki A, Nakazawa H, Nemoto M, et al. Formation of magnetite by bacteria and its application. Journal of the Royal Society, Interface, 2008, 5(26): 977–999

Dehsari H S, Ribeiro A H, Ersöez B, et al. Effect of precursor concentration on size evolution of iron oxide nanoparticles. CrystEngComm, 2017, 19(44): 6694–6702

Sugimoto T, ed. Fine Particles: Synthesis, Characterization, and Mechanism of Growth. New York, USA: Marcel Dekker, Inc., 2000

Wegner G. Biomineralization: Progress in biology, molecular biology and application, 2nd revised ed. Edited by E. Bäuerlein. ChemBioChem, 2005, 6(4): 762–763

Mamiya H. Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia. Journal of Nanomaterials, 2013, 2013: 752973

Nidhin M, Indumathy R, Sreeram K J, et al. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 2008, 31(1): 93–96

Atta-ur-Rahman F R S, Choudhary M I, eds. Frontiers in Anti-Cancer Drug Discovery. UAE: Bentham Science Publisher, 2013

Qi L, Lv X, Zhang T, et al. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells. Scientific Reports, 2016, 6(1): 26961

Bini R A, Marques R F, Santos F J, et al. Synthesis and functionalization of magnetite nanoparticles with different aminofunctional alkoxysilanes. Journal of Magnetism and Magnetic Materials, 2012, 324(4): 534–539

Justin C, Philip S A, Samrot A V. Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Applied Nanoscience, 2017, 7(7): 463–475

Bazylinski D A, Schübbe S. Controlled biomineralization by and application of magnetotactic bacteria. In: Laskin A I, Sariaslani S, Gadd G M, eds. Advances in Applied Microbiology (Volume 62). San Diego, CA, USA: Elsevier Inc., 2007, 21–62

Zhou J, Gan N, Li T, et al. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosensors & Bioelectronics, 2014, 54: 199–206

Sun J, Li Y, Liang X J, et al. Bacterial magnetosome: A novel biogenetic magnetic targeted drug carrier with potential multi-functions. Journal of Nanomaterials, 2011, 2011: 469031

Dunin-Borkowski R E, McCartney M R, Frankel R B, et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science, 1998, 282(5395): 1868–1870

Kiani B, Faivre D, Klumpp S. Elastic properties of magnetosome chains. New Journal of Physics, 2015, 17(4): 043007

Lins U, McCartney M R, Farina M, et al. Habits of magnetosome crystals in coccoid magnetotactic bacteria. Applied and Environmental Microbiology, 2005, 71(8): 4902–4905

Sugimoto T, Matijevic E. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. Journal of Colloid and Interface Science, 1980, 74(1): 227–243

Jolivet J P. Metal Oxide Chemistry and Synthesis: From Solutions to Solid State. New York, USA: John Wiley & Sons, Ltd., 2000

Nishio K, Ikeda M, Gokon N, et al. Preparation of size-controlled (30–100 nm) magnetite nanoparticles for biomedical applications. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 2408–2410

Bazylinski D A, Garratt-Reed A J, Frankel R B. Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microscopy Research and Technique, 1994, 27(5): 389–401

Balkwill D L, Maratea D, Blakemore R P. Ultrastructure of a magnetotactic spirillum. Journal of Bacteriology, 1980, 141(3): 1399–1408

Lins U, Freitas F, Keim C N, et al. Electron spectroscopic imaging of magnetotactic bacteria: Magnetosome morphology and diversity. Microscopy and Microanalysis, 2000, 6(5): 463–470

Butter K, Hoell A, Wiedenmann A, et al. Small-angle neutron and X-ray scattering of dispersions of oleic-acid-coated magnetic iron particles. Journal of Applied Crystallography, 2004, 37(6): 847–856

Moskowitz B M, Frankel R B, Flanders P, et al. Magnetic properties of magnetotactic bacteria. Journal of Magnetism and Magnetic Materials, 1988, 73(3): 273–288

Deatsch A E, Evans B A. Heating efficiency in magnetic nanoparticle hyperthermia. Journal of Magnetism and Magnetic Materials, 2014, 354: 163–172

Liu Y, Li G R, Guo F F, et al. Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microbial Cell Factories, 2010, 9(1): 99

Alphandéry E, Faure S, Seksek O, et al. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano, 2011, 5(8): 6279–6296

Martinez-Boubeta C, Simeonidis K, Makridis A, et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Scientific Reports, 2013, 3(1): 1652

Józefczak A, Leszczyński B, Skumiel A, et al. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions. Journal of Magnetism and Magnetic Materials, 2016, 407: 92–100

Revathy T, Jayasri M A, Suthindhiran K. Toxicity assessment of magnetosomes in different models. 3 Biotech, 2017, 7: 126 (11 pages)

Patravale V, Dandekar P, Jain R. Nanoparticulate Drug Delivery: Perspectives on the Transition from Laboratory to Market. Cambridge, UK: Woodhead Publishing Limited, 2012, 123–155

Liu R, Liu J, Tong J, et al. Heating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia. Progress in Natural Science, 2012, 22(1): 31–39

Naqvi S, Samim M, Abdin M Z, et al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. International Journal of Nanomedicine, 2010, 5: 983–989

Li X, Wang B, Jin H, et al. Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. The Journal of Gene Medicine, 2007, 9(8): 679–690

Balasubramanian S, Girija A R, Nagaoka Y, et al. Curcumin and 5-fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. International Journal of Nanomedicine, 2014, 9: 437–459

Chalkidou A, Simeonidis K, Angelakeris M, et al. In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment. Journal of Magnetism and Magnetic Materials, 2011, 323(6): 775–780

Sun J, Tang T, Duan J, et al. Biocompatibility of bacterial magnetosomes: acute toxicity, immunotoxicity and cytotoxicity. Nanotoxicology, 2010, 4(3): 271–283

Delcroix G J, Jacquart M, Lemaire L, et al. Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: in vitro characterization and migration potential in rat brain. Brain Research, 2009, 1255: 18–31

Hu F, Neoh K G, Cen L, et al. Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules, 2006, 7(3): 809–816

Hussain S M, Hess K L, Gearhart J M, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro, 2005, 19(7): 975–983

Gupta A K, Curtis A S G. Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture. Journal of Materials Science: Materials in Medicine, 2004, 15(4): 493–496

Sun J B, Duan J H, Dai S L, et al. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Letters, 2007, 258(1): 109–117

Lei Han, Li S Y, Yong Yang, et al. Research on the structure and performance of bacterial magnetic nanoparticles. Journal of Biomaterials Applications, 2008, 22(5): 433–448

Xiaoming L, Lee S C, Zhang S, et al. Biocompatibility and toxicity of nanobiomaterials. Journal of Nanomaterials, 2012, 2012: 591278

Derfus A, Chan W, Bhatia S. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Advanced Materials, 2004, 16(12): 961–966

Vonarbourg A, Passirani C, Saulnier P, et al. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials, 2006, 27(24): 4356–4373

Kim J A, Lee H J, Kang H J, et al. The targeting of endothelial progenitor cells to a specific location within a microfluidic channel using magnetic nanoparticles. Biomedical Microdevices, 2009, 11 (1): 287–296

Dandekar P, Dhumal R, Jain R, et al. Toxicological evaluation of pH-sensitive nanoparticles of curcumin: Acute, sub-acute and genotoxicity studies. Food and Chemical Toxicology, 2010, 48(8–9): 2073–2089

García A, Espinosa R, Delgado L, et al. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination, 2011, 269(1–3): 136–141

Timko M, Dzarova A, Kovac J, et al. Magnetic properties and heating effect in bacterial magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2009, 321(10): 1521–1524

Hergt R, Hiergeist R, Zeisberger M, et al. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. Journal of Magnetism and Magnetic Materials, 2005, 293 (1): 80–86

Alphandéry E, Guyot F, Chebbi I. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. International Journal of Pharmaceutics, 2012, 434(1–2): 444–452

Hu L L, Zhang F, Wang Z, et al. Comparison of the 1H NMR relaxation enhancement produced by bacterial magnetosomes and synthetic iron oxide nanoparticles for potential use as MR molecular probes. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 822–825

Xiang Z, Yang X, Xu J, et al. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide. Biomaterials, 2017, 115: 53–64

Mody V V, Singh A, Wesley B. Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. European Journal of Nanomedicine, 2013 doi:https://doi.org/10.1515/ejnm2012-0008

Grouzdev D S, Dziuba M V, Kurek D V, et al. Optimized method for preparation of IgG-binding bacterial magnetic nanoparticles. PLoS One, 2014, 9(10): e109914

Takahashi M, Yoshino T, Matsunaga T. Surface modification of magnetic nanoparticles using asparagines-serine polypeptide designed to control interactions with cell surfaces. Biomaterials, 2010, 31(18): 4952–4957

Matsunaga T, Takahashi M, Yoshino T, et al. Magnetic separation of CD14+ cells using antibody binding with protein A expressed on bacterial magnetic particles for generating dendritic cells. Biochemical and Biophysical Research Communications, 2006, 350(4): 1019–1025

Bañobre-López M, Teijeiro A, Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology and Radiotherapy, 2013, 18(6): 397–400

Bender E, Schramm T. Instruments for facilitation and improvement of procedures in cell and tissue cultivation. 2. Roller arrangement according to the prefabricated construction system, lifting arrangement for pressure filters and semi-automatic feeding device. Zeitschrift fur Medizinische Labortechnik, 1966, 7(6): 365–369

Strom R, Crifo C, Rossi-Fanelli A, et al. Biochemical aspects of heat sensitivity of tumour cells. In: Rossi-Fanelli A, Cavaliere R, Mondovì B, eds. Recent Results in Cancer Research: Selective Heat Sensitivity of Cancer Cells. Berlin, Germany: Springer-Verlag, 1977, 7–35

Sun J B, Wang Z L, Duan J H, et al. Targeted distribution of bacterial magnetosomes isolated from Magnetospirillum gryphiswaldense MSR-1 in healthy Sprague-Dawley rats. Journal of Nanoscience and Nanotechnology, 2009, 9(3): 1881–1885

Brown M A, Semelka R C. MRI: Basic Principles and Applications. 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003, 33–48

Mitchell D G, Cohen M S. MRI Principles. 2nd ed. Philadelphia, PA, USA: W. B. Saunders Company, 2004

Orlando T, Mannucci S, Fantechi E, et al. Characterization of magnetic nanoparticles from Magnetospirillum gryphiswaldense as potential theranostics tools. Contrast Media & Molecular Imaging, 2016, 11(2): 139–145

Kraupner A, Eberbeck D, Heinke D, et al. Bacterial magnetosomes — nature’s powerful contribution to MPI tracer research. Nanoscale, 2017, 9(18): 5788–5793

Mériaux S, Boucher M, Marty B, et al. Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner. Advanced Healthcare Materials, 2015, 4(7): 1076–1083

Widder K J, Morris R M, Poore G, et al. Tumor remission in Yoshida sarcoma-bearing rts by selective targeting of magnetic albumin microspheres containing doxorubicin. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(1): 579–581

Pulfer S K, Gallo J M. Enhanced brain tumor selectivity of cationic magnetic polysaccharide microspheres. Journal of Drug Targeting, 1998, 6(3): 215–227

Yalcin S, Unsoy G, Mutlu P, et al. Polyhydroxybutyrate-coated magnetic nanoparticles for doxorubicin delivery: cytotoxic effect against doxorubicin-resistant breast cancer cell line. American Journal of Therapeutics, 2014, 21(6): 453–461

Häfeli U O, Riffle J S, Harris-Shekhawat L, et al. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Molecular Pharmaceutics, 2009, 6(5): 1417–1428

Long R, Liu Y, Dai Q, et al. A natural bacterium-produced membrane-bound nanocarrier for drug combination therapy. Materials, 2016, 9(11): 889

Liu Y G, Dai Q L, Wang S B, et al. Preparation and in vitro antitumor effects of cytosine arabinoside-loaded genipin-poly-1-glutamic acid-modified bacterial magnetosomes. International Journal of Nanomedicine, 2015, 10: 1387–1397

Yoshino T, Hirabe H, Takahashi M, et al. Magnetic cell separation using nano-sized bacterial magnetic particles with reconstructed magnetosome membrane. Biotechnology and Bioengineering, 2008, 101(3): 470–477