Biomimetic aquaporin membranes coming of age

Desalination - Tập 368 - Trang 89-105 - 2015
Chuyang Y. Tang1, Zhining Wang2, Irena Petrinić3, Anthony G. Fane4, Claus Hélix‐Nielsen5,3
1Dept. of Civil Engineering, The Univ. of Hong Kong, Pokfulam, Hong Kong.
2Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education of China, Ocean University of China 238 Songling Road, Qingdao 266100, China
3University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia
4Singapore Membrane Technology Centre, Nanyang Technological University, 1 Clean Tech Loop, CleanTech One #06-08, Singapore 637141, Singapore
5Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cohen-Tanugi, 2014, Quantifying the potential of ultrapermeable membranes for water desalination, Energy Environ. Sci., 7, 1134, 10.1039/C3EE43221A

Sim, 2013, Strategic co-locations in a hybrid process involving desalination and Pressure Retarded Osmosis (PRO), Membranes, 3, 98, 10.3390/membranes3030098

Pendergast, 2011, A review of water treatment membrane nanotechnologies, Energy Environ. Sci., 4, 1946, 10.1039/c0ee00541j

Verkman, 2000, Structure and function of aquaporin water channels, Am. J. Physiol. Ren. Physiol., 278, F13, 10.1152/ajprenal.2000.278.1.F13

Gonen, 2006, The structure of aquaporins, Q. Rev. Biophys., 39, 361, 10.1017/S0033583506004458

Rehberg, 1926, Studies on kidney function. I. The rate of filtration and reabsorption in the human kidney, Biochem. J., 20, 447, 10.1042/bj0200447

Nielsen, 2002, Aquaporins in the kidney: from molecules to medicine, Physiol. Rev., 82, 205, 10.1152/physrev.00024.2001

Tang, 2009, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes II. Membrane physiochemical properties and their dependence on polyamide and coating layers, Desalination, 242, 168, 10.1016/j.desal.2008.04.004

Kumar, 2007, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z, Proc. Natl. Acad. Sci. U. S. A., 104, 20719, 10.1073/pnas.0708762104

MacHarg, 2008, ADC baseline tests reveal trends in membrane performance, Desalin. Water Reuse, 18, 30

Dorsey, 2012

Tang, 2013, Desalination by biomimetic aquaporin membranes: review of status and prospects, Desalination, 308, 34, 10.1016/j.desal.2012.07.007

Nielsen, 2009, Biomimetic membranes for sensor and separation applications, Anal. Bioanal. Chem., 395, 697, 10.1007/s00216-009-2960-0

Preston, 1992, Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein, Science, 256, 385, 10.1126/science.256.5055.385

Agre, 1993, Aquaporins: a family of water channel proteins, Am. J. Physiol., 265, F461

Abascal, 2014, Diversity and evolution of membrane intrinsic proteins, Biochim. Biophys. Acta, 1840, 1468, 10.1016/j.bbagen.2013.12.001

Jensen, 2006, Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF, Biophys. J., 90, 2270, 10.1529/biophysj.105.073965

Calamita, 1995, Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli, J. Biol. Chem., 270, 29063, 10.1074/jbc.270.49.29063

Verkman, 2005, More than just water channels: unexpected cellular roles of aquaporins, J. Cell Sci., 118, 3225, 10.1242/jcs.02519

Verkman, 2002, Does aquaporin-1 pass gas? An opposing view, J. Physiol., 542, 31, 10.1113/jphysiol.2002.024398

Bienert, 2008, Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out, Trends Biochem. Sci., 33, 20, 10.1016/j.tibs.2007.10.004

Verkman, 2014, Aquaporins: important but elusive drug targets, Nat. Rev. Drug Discov., 13, 259, 10.1038/nrd4226

Savage, 2003, Architecture and selectivity in aquaporins: 2.5Å X-ray structure of aquaporin Z, PLoS Biol., 1, E72, 10.1371/journal.pbio.0000072

Hashido, 2005, Comparative simulations of aquaporin family: AQP1, AQPZ, AQP0 and GlpF, FEBS Lett., 579, 5549, 10.1016/j.febslet.2005.09.018

Borgnia, 1999, Cellular and molecular biology of the aquaporin water channels, Annu. Rev. Biochem., 68, 425, 10.1146/annurev.biochem.68.1.425

Han, 2000, Protein kinase A-dependent phosphorylation of aquaporin-1, Biochem. Biophys. Res. Commun., 273, 328, 10.1006/bbrc.2000.2944

Ozu, 2013, Molecular dynamics of water in the neighborhood of aquaporins, Eur. Biophys. J., 42, 223, 10.1007/s00249-012-0880-y

Wang, 2010, Exploring transmembrane diffusion pathways with molecular dynamics, Physiology, 25, 142, 10.1152/physiol.00046.2009

Berezhkovskii, 2002, Single-file transport of water molecules through a carbon nanotube, Phys. Rev. Lett., 89, 064503, 10.1103/PhysRevLett.89.064503

Hummer, 2001, Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414, 188, 10.1038/35102535

Finkelstein, 1987

Zhu, 2004, Theory and simulation of water permeation in aquaporin-1, Biophys. J., 86, 50, 10.1016/S0006-3495(04)74082-5

Hashido, 2007, Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations, Biophys. J., 93, 373, 10.1529/biophysj.106.101170

Thomas, 2009, Water flow in carbon nanotubes: transition to subcontinuum transport, Phys. Rev. Lett., 102, 184502, 10.1103/PhysRevLett.102.184502

Bocquet, 2010, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev., 39, 10731095, 10.1039/B909366B

Gravelle, 2013, Optimizing water permeability through the hourglass shape of aquaporins, Proc. Natl. Acad. Sci. U. S. A., 110, 16367, 10.1073/pnas.1306447110

Holt, 2006, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312, 1034, 10.1126/science.1126298

Zeidel, 1992, Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein, Biochemistry, 31, 7436, 10.1021/bi00148a002

Grzelakowski, 2015, A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes, J. Membr. Sci., 479, 223, 10.1016/j.memsci.2015.01.023

Johansson, 1998, Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation, Plant Cell, 10, 451, 10.1105/tpc.10.3.451

Törnroth-Horsefield, 2006, Structural mechanism of plant aquaporin gating, Nature, 439, 688, 10.1038/nature04316

Hiroaki, 2006, Implications of the aquaporin-4 structure on array formation and cell adhesion, J. Mol. Biol., 355, 628, 10.1016/j.jmb.2005.10.081

Fischer, 2009, Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism, PLoS Biol., 7, e1000130, 10.1371/journal.pbio.1000130

Xin, 2011, Water permeation dynamics of AqpZ: a tale of two states, Biochim. Biophys. Acta, 1808, 1581, 10.1016/j.bbamem.2011.02.001

Xin, 2012, Population shift between the open and closed states changes the water permeability of an Aquaporin Z mutant, Biophys. J., 103, 212, 10.1016/j.bpj.2012.05.049

Burykin, 2003, What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals, Biophys. J., 85, 3696, 10.1016/S0006-3495(03)74786-9

Miloshevsky, 2004, Water and ion permeation in bAQP1 and GlpF channels: a kinetic Monte Carlo study, Biophys. J., 87, 3690, 10.1529/biophysj.104.043315

Tajkhorshid, 2002, Control of the selectivity of the aquaporin water channel family by global orientational tuning, Science, 296, 525, 10.1126/science.1067778

Burykin, 2006, Membranes assembled from narrow carbon nanotubes block proton transport and can form effective nanofiltration devices, J. Comput. Theor. Nanosci., 3, 237, 10.1166/jctn.2006.3003

Kato, 2006, The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations, Proteins, 64, 829, 10.1002/prot.21012

Beitz, 2006, Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons, Proc. Natl. Acad. Sci. U. S. A., 103, 269, 10.1073/pnas.0507225103

Chen, 2006, Origins of proton transport behavior from selectivity domain mutations of the aquaporin-1 channel, Biophys. J., 90, L73, 10.1529/biophysj.106.084061

de Groot, 2005, The dynamics and energetics of water permeation and proton exclusion in aquaporins, Curr. Opin. Struct. Biol., 15, 176, 10.1016/j.sbi.2005.02.003

Plasencia, 2011, Structure and stability of the spinach aquaporin SoPIP2;1 in detergent micelles and lipid membranes, PLoS One, 6, e14674, 10.1371/journal.pone.0014674

Hansen, 2011, Interaction between sodium dodecyl sulfate and membrane reconstituted aquaporins: a comparative study of spinach SoPIP2;1 and E. coli AqpZ, Biochim. Biophys. Acta, 1808, 2600, 10.1016/j.bbamem.2011.05.021

van Hoek, 1992, Functional reconstitution of the isolated erythrocyte water channel CHIP28, J. Biol. Chem., 267, 18267, 10.1016/S0021-9258(19)36953-4

Van Hoek, 1993, Secondary structure analysis of purified functional CHIP28 water channels by CD and FTIR spectroscopy, Biochemistry, 32, 11847, 10.1021/bi00095a013

Hansen, 2011, Formation of giant protein vesicles by a lipid cosolvent method, Chembiochem, 12, 2856, 10.1002/cbic.201100537

Stoenescu, 2004, Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane proteins, Macromol. Biosci., 4, 930, 10.1002/mabi.200400065

Nielsen, 1998, Energetics of inclusion-induced bilayer deformations, Biophys. J., 74, 1966, 10.1016/S0006-3495(98)77904-4

Andersen, 1998, Gramicidin channels as molecular force transducers in lipid bilayers, Biol. Skr. Dan. Vidensk. Selsk., 49, 75

Nielsen, 2000, Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature, Biophys. J., 79, 2583, 10.1016/S0006-3495(00)76498-8

Andersen, 2007, Bilayer thickness and membrane protein function: an energetic perspective, Annu. Rev. Biophys. Biomol. Struct., 36, 107, 10.1146/annurev.biophys.36.040306.132643

Tong, 2009, Sorting of lens aquaporins and connexins into raft and nonraft bilayers: role of protein homo-oligomerization, Biophys. J., 97, 2493, 10.1016/j.bpj.2009.08.026

Tong, 2013, The water permeability of lens aquaporin-0 depends on its lipid bilayer environment, Exp. Eye Res., 113, 32, 10.1016/j.exer.2013.04.022

Tong, 2012, Water permeability of aquaporin-4 channel depends on bilayer composition, thickness, and elasticity, Biophys. J., 103, 1899, 10.1016/j.bpj.2012.09.025

Stansfeld, 2013, Multiscale simulations reveal conserved patterns of lipid interactions with aquaporins, Structure, 21, 810, 10.1016/j.str.2013.03.005

Kaufman, 2010, Supported lipid bilayer membranes for water purification by reverse osmosis, Langmuir, 26, 7388, 10.1021/la904411b

Li, 2012, Preparation of supported lipid membranes for aquaporin Z incorporation, Colloids Surf. B Biointerfaces, 94, 333, 10.1016/j.colsurfb.2012.02.013

Kaufman, 2014, Towards supported bolaamphiphile membranes for water filtration: roles of lipid and substrate, J. Membr. Sci., 457, 50, 10.1016/j.memsci.2014.01.036

Shen, 2014, Biomimetic membranes: A review, J. Membr. Sci., 454, 359, 10.1016/j.memsci.2013.12.019

Kaufman, 2013, Fusion of bolaamphiphile micelles: a method to prepare stable supported biomimetic membranes, Langmuir, 29, 1152, 10.1021/la304484p

Subramani, 2015, Emerging desalination technologies for water treatment: A critical review, Water Res., 75, 164, 10.1016/j.watres.2015.02.032

Duong, 2012, Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration, J. Membr. Sci., 409, 34, 10.1016/j.memsci.2012.03.004

Zhong, 2012, Aquaporin-embedded biomimetic membranes for nanofiltration, J. Membr. Sci., 407–408, 27, 10.1016/j.memsci.2012.03.033

Hansen, 2009, Large scale biomimetic membrane arrays, Anal. Bioanal. Chem., 395, 719, 10.1007/s00216-009-3010-7

Hansen, 2009, Development of an automation technique for the establishment of functional lipid bilayer arrays, J. Micromech. Microeng., 19, 025014, 10.1088/0960-1317/19/2/025014

Vogel, 2008, Support structure for biomimetic membranes

Sun, 2013, Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification, Colloids Surf. B Biointerfaces, 102, 466, 10.1016/j.colsurfb.2012.08.009

Zhao, 2012, Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization, J. Membr. Sci., 423, 422, 10.1016/j.memsci.2012.08.039

Li, 2014, Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z, J. Membr. Sci., 450, 181, 10.1016/j.memsci.2013.09.007

Sun, 2013, A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane, RSC Adv., 3, 473, 10.1039/C2RA21767H

Wang, 2013, Mechanically robust and highly permeable AquaporinZ biomimetic membranes, J. Membr. Sci., 434, 130, 10.1016/j.memsci.2013.01.031

Xie, 2013, An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration, J. Mater. Chem. A, 1, 7592, 10.1039/c3ta10731k

Sun, 2013, Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach, RSC Adv., 3, 9178, 10.1039/c3ra40608c

Zhao, 2013, Effects of proteoliposome composition and draw solution types on separation performance of aquaporin-based proteoliposomes: implications for seawater desalination using aquaporin-based biomimetic membranes, Environ. Sci. Technol., 47, 1496

Mech-Dorosz, 2015, A reusable device for electrochemical applications of hydrogel supported black lipid membranes, Biomed. Microdevices, 17, 21, 10.1007/s10544-015-9936-y

Wang, 2011, Preparation and characterization of pore-suspending biomimetic membranes embedded with Aquaporin Z on carboxylated polyethylene glycol polymer cushion, Soft Matter, 7, 7274, 10.1039/c1sm05527e

Wang, 2015, Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification, Environ. Sci. Technol., 3761, 10.1021/es5056337

Wang, 2012, Highly permeable and selective pore-spanning biomimetic membrane embedded with Aquaporin Z, Small, 8, 1185, 10.1002/smll.201102120

Zhong, 2012, Aquaporin-embedded biomimetic membranes for nanofiltration, J. Membr. Sci., 407, 27, 10.1016/j.memsci.2012.03.033

Bomholt, 2013, Production of human aquaporin-1 in Saccharomyces cerevisiae to a high membrane density, PLoS One, 8, e56431, 10.1371/journal.pone.0056431

Nyblom, 2007, Exceptional overproduction of a functional human membrane protein, Protein Expr. Purif., 56, 110, 10.1016/j.pep.2007.07.007

Muller-Lucks, 2013, Preparative scale production and functional reconstitution of a human aquaglyceroporin (AQP3) using a cell free expression system, New Biotechnol., 30, 545, 10.1016/j.nbt.2013.03.007

Altamura, 2012, Systems for production of proteins for biomimetic membrane devices, 233

Fane, 2011, Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis, 301

Madsen, 2015, Use of biomimetic forward osmosis membrane to remove trace organics, J. Membr. Sci., 476, 469, 10.1016/j.memsci.2014.11.055

Zhao, 2014

Wei, 2011, Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes, J. Membr. Sci., 372, 292, 10.1016/j.memsci.2011.02.013

Gerstandt, 2014, Aquaporin Containing Membranes (ACM) for Fertiliser Drawn Forward Osmosis (FDFO), 14

Valladares Linares, 2013, Cleaning protocol for a FO membrane fouled in wastewater reuse, Desalin. Water Treat., 51, 4821, 10.1080/19443994.2013.795345

Li, 2012, Flux patterns and membrane fouling propensity during desalination of seawater by forward osmosis, Water Res., 46, 195, 10.1016/j.watres.2011.10.051

Xie, 2012, Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis, Water Res., 47, 4567, 10.1016/j.watres.2013.05.013

Amy, 2008, Fundamental understanding of organic matter fouling of membranes, Desalination, 231, 44, 10.1016/j.desal.2007.11.037

Tang, 2011, Colloidal interactions and fouling of NF and RO membranes: A review, Adv. Colloid Interface Sci., 164, 126, 10.1016/j.cis.2010.10.007

Lawrence, 2006, The use of streaming potential measurements to study the fouling and cleaning of ultrafiltration membranes, Sep. Purif. Technol., 106, 10.1016/j.seppur.2005.07.009

Vyrides, 2011, Fouling cake layer in a submerged anaerobic membrane bioreactor treating saline wastewaters: curse or a blessing, Water Sci. Technol., 63, 2902, 10.2166/wst.2011.461

Prime, 1991, Self-assembled monolayers — model systems for studying adsorption of proteins at surfaces, Science, 252, 1164, 10.1126/science.252.5009.1164

P.H. Jensen, CEO Aquaporin A/S (personal communication), in, 2015.

Gruber, 2011, Computational Fluid Dynamics simulations of flow and concentration polarization in forward osmosis membrane systems, J. Membr. Sci., 379, 488, 10.1016/j.memsci.2011.06.022

Gruber, 2012, Validation and analysis of forward osmosis CFD model in complex 3D geometries, Membranes, 2, 764, 10.3390/membranes2040764