Biomimetic aquaporin membranes coming of age
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cohen-Tanugi, 2014, Quantifying the potential of ultrapermeable membranes for water desalination, Energy Environ. Sci., 7, 1134, 10.1039/C3EE43221A
Sim, 2013, Strategic co-locations in a hybrid process involving desalination and Pressure Retarded Osmosis (PRO), Membranes, 3, 98, 10.3390/membranes3030098
Pendergast, 2011, A review of water treatment membrane nanotechnologies, Energy Environ. Sci., 4, 1946, 10.1039/c0ee00541j
Verkman, 2000, Structure and function of aquaporin water channels, Am. J. Physiol. Ren. Physiol., 278, F13, 10.1152/ajprenal.2000.278.1.F13
Rehberg, 1926, Studies on kidney function. I. The rate of filtration and reabsorption in the human kidney, Biochem. J., 20, 447, 10.1042/bj0200447
Nielsen, 2002, Aquaporins in the kidney: from molecules to medicine, Physiol. Rev., 82, 205, 10.1152/physrev.00024.2001
Tang, 2009, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes II. Membrane physiochemical properties and their dependence on polyamide and coating layers, Desalination, 242, 168, 10.1016/j.desal.2008.04.004
Kumar, 2007, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z, Proc. Natl. Acad. Sci. U. S. A., 104, 20719, 10.1073/pnas.0708762104
MacHarg, 2008, ADC baseline tests reveal trends in membrane performance, Desalin. Water Reuse, 18, 30
Dorsey, 2012
Tang, 2013, Desalination by biomimetic aquaporin membranes: review of status and prospects, Desalination, 308, 34, 10.1016/j.desal.2012.07.007
Nielsen, 2009, Biomimetic membranes for sensor and separation applications, Anal. Bioanal. Chem., 395, 697, 10.1007/s00216-009-2960-0
Preston, 1992, Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein, Science, 256, 385, 10.1126/science.256.5055.385
Agre, 1993, Aquaporins: a family of water channel proteins, Am. J. Physiol., 265, F461
Abascal, 2014, Diversity and evolution of membrane intrinsic proteins, Biochim. Biophys. Acta, 1840, 1468, 10.1016/j.bbagen.2013.12.001
Jensen, 2006, Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF, Biophys. J., 90, 2270, 10.1529/biophysj.105.073965
Calamita, 1995, Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli, J. Biol. Chem., 270, 29063, 10.1074/jbc.270.49.29063
Verkman, 2005, More than just water channels: unexpected cellular roles of aquaporins, J. Cell Sci., 118, 3225, 10.1242/jcs.02519
Verkman, 2002, Does aquaporin-1 pass gas? An opposing view, J. Physiol., 542, 31, 10.1113/jphysiol.2002.024398
Bienert, 2008, Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out, Trends Biochem. Sci., 33, 20, 10.1016/j.tibs.2007.10.004
Verkman, 2014, Aquaporins: important but elusive drug targets, Nat. Rev. Drug Discov., 13, 259, 10.1038/nrd4226
Savage, 2003, Architecture and selectivity in aquaporins: 2.5Å X-ray structure of aquaporin Z, PLoS Biol., 1, E72, 10.1371/journal.pbio.0000072
Hashido, 2005, Comparative simulations of aquaporin family: AQP1, AQPZ, AQP0 and GlpF, FEBS Lett., 579, 5549, 10.1016/j.febslet.2005.09.018
Borgnia, 1999, Cellular and molecular biology of the aquaporin water channels, Annu. Rev. Biochem., 68, 425, 10.1146/annurev.biochem.68.1.425
Han, 2000, Protein kinase A-dependent phosphorylation of aquaporin-1, Biochem. Biophys. Res. Commun., 273, 328, 10.1006/bbrc.2000.2944
Ozu, 2013, Molecular dynamics of water in the neighborhood of aquaporins, Eur. Biophys. J., 42, 223, 10.1007/s00249-012-0880-y
Wang, 2010, Exploring transmembrane diffusion pathways with molecular dynamics, Physiology, 25, 142, 10.1152/physiol.00046.2009
Berezhkovskii, 2002, Single-file transport of water molecules through a carbon nanotube, Phys. Rev. Lett., 89, 064503, 10.1103/PhysRevLett.89.064503
Hummer, 2001, Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414, 188, 10.1038/35102535
Finkelstein, 1987
Zhu, 2004, Theory and simulation of water permeation in aquaporin-1, Biophys. J., 86, 50, 10.1016/S0006-3495(04)74082-5
Hashido, 2007, Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations, Biophys. J., 93, 373, 10.1529/biophysj.106.101170
Thomas, 2009, Water flow in carbon nanotubes: transition to subcontinuum transport, Phys. Rev. Lett., 102, 184502, 10.1103/PhysRevLett.102.184502
Bocquet, 2010, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev., 39, 10731095, 10.1039/B909366B
Gravelle, 2013, Optimizing water permeability through the hourglass shape of aquaporins, Proc. Natl. Acad. Sci. U. S. A., 110, 16367, 10.1073/pnas.1306447110
Holt, 2006, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312, 1034, 10.1126/science.1126298
Zeidel, 1992, Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein, Biochemistry, 31, 7436, 10.1021/bi00148a002
Grzelakowski, 2015, A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes, J. Membr. Sci., 479, 223, 10.1016/j.memsci.2015.01.023
Johansson, 1998, Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation, Plant Cell, 10, 451, 10.1105/tpc.10.3.451
Törnroth-Horsefield, 2006, Structural mechanism of plant aquaporin gating, Nature, 439, 688, 10.1038/nature04316
Hiroaki, 2006, Implications of the aquaporin-4 structure on array formation and cell adhesion, J. Mol. Biol., 355, 628, 10.1016/j.jmb.2005.10.081
Fischer, 2009, Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism, PLoS Biol., 7, e1000130, 10.1371/journal.pbio.1000130
Xin, 2011, Water permeation dynamics of AqpZ: a tale of two states, Biochim. Biophys. Acta, 1808, 1581, 10.1016/j.bbamem.2011.02.001
Xin, 2012, Population shift between the open and closed states changes the water permeability of an Aquaporin Z mutant, Biophys. J., 103, 212, 10.1016/j.bpj.2012.05.049
Burykin, 2003, What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals, Biophys. J., 85, 3696, 10.1016/S0006-3495(03)74786-9
Miloshevsky, 2004, Water and ion permeation in bAQP1 and GlpF channels: a kinetic Monte Carlo study, Biophys. J., 87, 3690, 10.1529/biophysj.104.043315
Tajkhorshid, 2002, Control of the selectivity of the aquaporin water channel family by global orientational tuning, Science, 296, 525, 10.1126/science.1067778
Burykin, 2006, Membranes assembled from narrow carbon nanotubes block proton transport and can form effective nanofiltration devices, J. Comput. Theor. Nanosci., 3, 237, 10.1166/jctn.2006.3003
Kato, 2006, The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations, Proteins, 64, 829, 10.1002/prot.21012
Beitz, 2006, Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons, Proc. Natl. Acad. Sci. U. S. A., 103, 269, 10.1073/pnas.0507225103
Chen, 2006, Origins of proton transport behavior from selectivity domain mutations of the aquaporin-1 channel, Biophys. J., 90, L73, 10.1529/biophysj.106.084061
de Groot, 2005, The dynamics and energetics of water permeation and proton exclusion in aquaporins, Curr. Opin. Struct. Biol., 15, 176, 10.1016/j.sbi.2005.02.003
Plasencia, 2011, Structure and stability of the spinach aquaporin SoPIP2;1 in detergent micelles and lipid membranes, PLoS One, 6, e14674, 10.1371/journal.pone.0014674
Hansen, 2011, Interaction between sodium dodecyl sulfate and membrane reconstituted aquaporins: a comparative study of spinach SoPIP2;1 and E. coli AqpZ, Biochim. Biophys. Acta, 1808, 2600, 10.1016/j.bbamem.2011.05.021
van Hoek, 1992, Functional reconstitution of the isolated erythrocyte water channel CHIP28, J. Biol. Chem., 267, 18267, 10.1016/S0021-9258(19)36953-4
Van Hoek, 1993, Secondary structure analysis of purified functional CHIP28 water channels by CD and FTIR spectroscopy, Biochemistry, 32, 11847, 10.1021/bi00095a013
Hansen, 2011, Formation of giant protein vesicles by a lipid cosolvent method, Chembiochem, 12, 2856, 10.1002/cbic.201100537
Stoenescu, 2004, Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane proteins, Macromol. Biosci., 4, 930, 10.1002/mabi.200400065
Nielsen, 1998, Energetics of inclusion-induced bilayer deformations, Biophys. J., 74, 1966, 10.1016/S0006-3495(98)77904-4
Andersen, 1998, Gramicidin channels as molecular force transducers in lipid bilayers, Biol. Skr. Dan. Vidensk. Selsk., 49, 75
Nielsen, 2000, Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature, Biophys. J., 79, 2583, 10.1016/S0006-3495(00)76498-8
Andersen, 2007, Bilayer thickness and membrane protein function: an energetic perspective, Annu. Rev. Biophys. Biomol. Struct., 36, 107, 10.1146/annurev.biophys.36.040306.132643
Tong, 2009, Sorting of lens aquaporins and connexins into raft and nonraft bilayers: role of protein homo-oligomerization, Biophys. J., 97, 2493, 10.1016/j.bpj.2009.08.026
Tong, 2013, The water permeability of lens aquaporin-0 depends on its lipid bilayer environment, Exp. Eye Res., 113, 32, 10.1016/j.exer.2013.04.022
Tong, 2012, Water permeability of aquaporin-4 channel depends on bilayer composition, thickness, and elasticity, Biophys. J., 103, 1899, 10.1016/j.bpj.2012.09.025
Stansfeld, 2013, Multiscale simulations reveal conserved patterns of lipid interactions with aquaporins, Structure, 21, 810, 10.1016/j.str.2013.03.005
Kaufman, 2010, Supported lipid bilayer membranes for water purification by reverse osmosis, Langmuir, 26, 7388, 10.1021/la904411b
Li, 2012, Preparation of supported lipid membranes for aquaporin Z incorporation, Colloids Surf. B Biointerfaces, 94, 333, 10.1016/j.colsurfb.2012.02.013
Kaufman, 2014, Towards supported bolaamphiphile membranes for water filtration: roles of lipid and substrate, J. Membr. Sci., 457, 50, 10.1016/j.memsci.2014.01.036
Kaufman, 2013, Fusion of bolaamphiphile micelles: a method to prepare stable supported biomimetic membranes, Langmuir, 29, 1152, 10.1021/la304484p
Subramani, 2015, Emerging desalination technologies for water treatment: A critical review, Water Res., 75, 164, 10.1016/j.watres.2015.02.032
Duong, 2012, Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration, J. Membr. Sci., 409, 34, 10.1016/j.memsci.2012.03.004
Zhong, 2012, Aquaporin-embedded biomimetic membranes for nanofiltration, J. Membr. Sci., 407–408, 27, 10.1016/j.memsci.2012.03.033
Hansen, 2009, Large scale biomimetic membrane arrays, Anal. Bioanal. Chem., 395, 719, 10.1007/s00216-009-3010-7
Hansen, 2009, Development of an automation technique for the establishment of functional lipid bilayer arrays, J. Micromech. Microeng., 19, 025014, 10.1088/0960-1317/19/2/025014
Vogel, 2008, Support structure for biomimetic membranes
Sun, 2013, Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification, Colloids Surf. B Biointerfaces, 102, 466, 10.1016/j.colsurfb.2012.08.009
Zhao, 2012, Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization, J. Membr. Sci., 423, 422, 10.1016/j.memsci.2012.08.039
Li, 2014, Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z, J. Membr. Sci., 450, 181, 10.1016/j.memsci.2013.09.007
Sun, 2013, A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane, RSC Adv., 3, 473, 10.1039/C2RA21767H
Wang, 2013, Mechanically robust and highly permeable AquaporinZ biomimetic membranes, J. Membr. Sci., 434, 130, 10.1016/j.memsci.2013.01.031
Xie, 2013, An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration, J. Mater. Chem. A, 1, 7592, 10.1039/c3ta10731k
Sun, 2013, Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach, RSC Adv., 3, 9178, 10.1039/c3ra40608c
Zhao, 2013, Effects of proteoliposome composition and draw solution types on separation performance of aquaporin-based proteoliposomes: implications for seawater desalination using aquaporin-based biomimetic membranes, Environ. Sci. Technol., 47, 1496
Mech-Dorosz, 2015, A reusable device for electrochemical applications of hydrogel supported black lipid membranes, Biomed. Microdevices, 17, 21, 10.1007/s10544-015-9936-y
Wang, 2011, Preparation and characterization of pore-suspending biomimetic membranes embedded with Aquaporin Z on carboxylated polyethylene glycol polymer cushion, Soft Matter, 7, 7274, 10.1039/c1sm05527e
Wang, 2015, Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification, Environ. Sci. Technol., 3761, 10.1021/es5056337
Wang, 2012, Highly permeable and selective pore-spanning biomimetic membrane embedded with Aquaporin Z, Small, 8, 1185, 10.1002/smll.201102120
Zhong, 2012, Aquaporin-embedded biomimetic membranes for nanofiltration, J. Membr. Sci., 407, 27, 10.1016/j.memsci.2012.03.033
Bomholt, 2013, Production of human aquaporin-1 in Saccharomyces cerevisiae to a high membrane density, PLoS One, 8, e56431, 10.1371/journal.pone.0056431
Nyblom, 2007, Exceptional overproduction of a functional human membrane protein, Protein Expr. Purif., 56, 110, 10.1016/j.pep.2007.07.007
Muller-Lucks, 2013, Preparative scale production and functional reconstitution of a human aquaglyceroporin (AQP3) using a cell free expression system, New Biotechnol., 30, 545, 10.1016/j.nbt.2013.03.007
Altamura, 2012, Systems for production of proteins for biomimetic membrane devices, 233
Fane, 2011, Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis, 301
Madsen, 2015, Use of biomimetic forward osmosis membrane to remove trace organics, J. Membr. Sci., 476, 469, 10.1016/j.memsci.2014.11.055
Zhao, 2014
Wei, 2011, Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes, J. Membr. Sci., 372, 292, 10.1016/j.memsci.2011.02.013
Gerstandt, 2014, Aquaporin Containing Membranes (ACM) for Fertiliser Drawn Forward Osmosis (FDFO), 14
Valladares Linares, 2013, Cleaning protocol for a FO membrane fouled in wastewater reuse, Desalin. Water Treat., 51, 4821, 10.1080/19443994.2013.795345
Li, 2012, Flux patterns and membrane fouling propensity during desalination of seawater by forward osmosis, Water Res., 46, 195, 10.1016/j.watres.2011.10.051
Xie, 2012, Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis, Water Res., 47, 4567, 10.1016/j.watres.2013.05.013
Amy, 2008, Fundamental understanding of organic matter fouling of membranes, Desalination, 231, 44, 10.1016/j.desal.2007.11.037
Tang, 2011, Colloidal interactions and fouling of NF and RO membranes: A review, Adv. Colloid Interface Sci., 164, 126, 10.1016/j.cis.2010.10.007
Lawrence, 2006, The use of streaming potential measurements to study the fouling and cleaning of ultrafiltration membranes, Sep. Purif. Technol., 106, 10.1016/j.seppur.2005.07.009
Vyrides, 2011, Fouling cake layer in a submerged anaerobic membrane bioreactor treating saline wastewaters: curse or a blessing, Water Sci. Technol., 63, 2902, 10.2166/wst.2011.461
Prime, 1991, Self-assembled monolayers — model systems for studying adsorption of proteins at surfaces, Science, 252, 1164, 10.1126/science.252.5009.1164
P.H. Jensen, CEO Aquaporin A/S (personal communication), in, 2015.
Gruber, 2011, Computational Fluid Dynamics simulations of flow and concentration polarization in forward osmosis membrane systems, J. Membr. Sci., 379, 488, 10.1016/j.memsci.2011.06.022