Biomedical soft robots: current status and perspective
Tóm tắt
Từ khóa
Tài liệu tham khảo
Acemoglu D, Restrepo P. Robots and jobs: evidence from US labor markets. National Bureau of Economic Research Working Paper Series No. 23285. 2017.
Graetz G, Michaels G. Review of economics and statistics. Robots Work MIT Press J. 2018;100(5):753–68.
Bragança S, Costa E, Castellucci I, Arezes PM. A brief overview of the use of collaborative robots in industry 4.0: human role and safety. In: Arezes P, et al. editors. Occupational and environmental safety and health Vol 202. Springer: Cham; 2019.
Fernando Y, Mathath A, Murshid MA. Improving productivity: a review of robotic applications in food industry. Int J Robot Appl Technol IJRAT. 2016;4(1):43–62.
Hall AK, et al. Acceptance and perceived usefulness of robots to assist with activities of daily living and healthcare tasks. Assist Technol. 2019;31(3):133–40.
Roldán JJ, et al. Robots in agriculture: state of art and practical experiences. In: Antonio JRN, editors. Service Robots. Intech Open. 2017. https://doi.org/10.5772/intechopen.69874.
Valavanis KP, Vachtsevanos GJ, editors. Future of unmanned aviation. In: Valavanis KP, Vachtsevanos GJ, editors. Handbook of unmanned aerial vehicles. Springer: Dordrecht. 2015. p. 2993–3009.
Calanca A, Muradore R, Fiorini P. A review of algorithms for compliant control of stiff and fixed-compliance robots. IEEEASME Trans Mechatron. 2015;21(2):613–24.
Deimel R, Brock O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int J Robot Res. 2016;35(1–3):161–85.
Manti M, Hassan T, Passetti G, D’Elia N, Laschi C, Cianchetti M. A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot. 2015;2(3):107–16. https://doi.org/10.1089/soro.2015.0009.
Laschi C, Mazzolai B, Cianchetti M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci Robot. 2016;1(1):eaah3690. https://doi.org/10.1126/scirobotics.aah3690.
Yang G-Z, et al. The grand challenges of science robotics. Sci Robot. 2018;3(14):eaar7650. https://doi.org/10.1126/scirobotics.aar7650.
Filippini R, Sen S, Bicchi A. Toward soft robots you can depend on. IEEE Robot Autom Mag. 2008;15(3):31–41. https://doi.org/10.1109/MRA.2008.927696.
Cowan L, Walker I. ‘Soft’ continuum robots: the interaction of continuous and discrete elements. Artif Life. The 11th International Conference on the Synthesis and Simulation of Living Systems. Winchester, United Kingdom. 2008: 126–33. http://www.alife.org/conference/alife-11.
Shepherd RF, et al. Multigait soft robot. Proc Natl Acad Sci. 2011;108(51):20400–3. https://doi.org/10.1073/pnas.1116564108.
Calisti M, et al. Design and development of a soft robot with crawling and grasping capabilities. In: 2012 IEEE international conference on robotics and automation, St Paul, MN, USA, 2012. p. 4950–55. https://doi.org/10.1109/icra.2012.6224671.
Rossiter J, Hauser H. Soft robotics—the next industrial revolution? [Industrial Activities]. IEEE Robot Autom Mag. 2016;23(3):17–20. https://doi.org/10.1109/MRA.2016.2588018.
Majidi C. Soft robotics: a perspective—current trends and prospects for the future. Soft Robot. 2014;1(1):5–11. https://doi.org/10.1089/soro.2013.0001.
Polygerinos P, et al. Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction: review of fluid-driven intrinsically soft robots. Adv Eng Mater. 2017;19(12):1700016. https://doi.org/10.1002/adem.201700016.
Deimel R, Brock O. A compliant hand based on a novel pneumatic actuator. In: 2013 IEEE international conference on robotics and automation, Karlsruhe, Germany, 2013. p. 2047–53. https://doi.org/10.1109/icra.2013.6630851.
Manti M, Pratesi A, Falotico E, Cianchetti M, Laschi C. Soft assistive robot for personal care of elderly people. In: 2016 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob), 2016. p. 833–8. https://doi.org/10.1109/biorob.2016.7523731.
Ansari Y, Manti M, Falotico E, Mollard Y, Cianchetti M, Laschi C. Towards the development of a soft manipulator as an assistive robot for personal care of elderly people. Int J Adv Robot Syst. 2017;14(2):1729881416687132. https://doi.org/10.1177/1729881416687132.
She Y, Li C, Cleary J, Su H-J. Design and fabrication of a soft robotic hand with embedded actuators and sensors. J Mech Robot. 2015;7(2):021007. https://doi.org/10.1115/1.4029497.
Yamada Y, Morizono M, Umetani U, Takahashi T. Highly soft viscoelastic robot skin with a contact object-location-sensing capability. IEEE Trans Ind Electron. 2005;52(4):960–8. https://doi.org/10.1109/TIE.2005.851654.
Morrow J, et al. Improving soft pneumatic actuator fingers through integration of soft sensors, position and force control, and rigid fingernails. In: 2016 IEEE international conference on robotics and automation (ICRA), Stockholm, Sweden, 2016. p. 5024–31. https://doi.org/10.1109/icra.2016.7487707.
Stokes AA, Shepherd RF, Morin SA, Ilievski F, Whitesides GM. A hybrid combining hard and soft robots. Soft Robot. 2014;1(1):70–4. https://doi.org/10.1089/soro.2013.0002.
Tee BC-K, Wang C, Allen R, Bao Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol. 2012;7:825.
Terryn S, Brancart J, Lefeber D, Van Assche G, Vanderborght B. Self-healing soft pneumatic robots. Sci Robot. 2017;2(9):eaan4268. https://doi.org/10.1126/scirobotics.aan4268.
Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat Mater. 2018;17(7):618–24. https://doi.org/10.1038/s41563-018-0084-7.
Duchaine V, Lauzier N, Baril M, Lacasse M-A, Gosselin C. A flexible robot skin for safe physical human robot interaction. In: 2009 IEEE international conference on robotics and automation, Kobe, 2009. p. 3676–81. https://doi.org/10.1109/robot.2009.5152595.
Bartlett NW, et al. A 3D-printed, functionally graded soft robot powered by combustion. Science. 2015;349(6244):161–5. https://doi.org/10.1126/science.aab0129.
Cho K-J, Koh J-S, Kim S, Chu W-S, Hong Y, Ahn S-H. Review of manufacturing processes for soft biomimetic robots. Int J Precis Eng Manuf. 2009;10(3):171–81. https://doi.org/10.1007/s12541-009-0064-6.
Lipson H. Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robot. 2014;1(1):21–7. https://doi.org/10.1089/soro.2013.0007.
Wang H, Totaro M, Beccai L. Toward perceptive soft robots: progress and challenges. Adv Sci. 2018;5(9):1800541. https://doi.org/10.1002/advs.201800541.
Trimmer BA. New challenges in biorobotics: incorporating soft tissue into control systems. Appl Bionics Biomech. 2008;5(3):119–26. https://doi.org/10.1080/11762320802617255.
Duriez C. Control of elastic soft robots based on real-time finite element method. In: 2013 IEEE international conference on robotics and automation, Karlsruhe, Germany, 2013. p. 3982–7. https://doi.org/10.1109/icra.2013.6631138.
Moseley P, Florez JM, Sonar HA, Agarwal G, Curtin W, Paik J. Modeling, design, and development of soft pneumatic actuators with finite element method: modeling, design, and development of SPAs with FEM …. Adv Eng Mater. 2016;18(6):978–88. https://doi.org/10.1002/adem.201500503.
Trivedi D, Lotfi A, Rahn CD. Geometrically exact models for soft robotic manipulators. IEEE Trans Robot. 2008;24(4):773–80. https://doi.org/10.1109/TRO.2008.924923.
Largilliere F, Verona V, Coevoet E, Sanz-Lopez M, Dequidt J, Duriez C. Real-time control of soft-robots using asynchronous finite element modeling. In: 2015 IEEE international conference on robotics and automation (ICRA), Seattle, WA, USA, 2015. p. 2550–5. https://doi.org/10.1109/icra.2015.7139541.
Elsayed Y, et al. Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Robot. 2014;1(4):255–62. https://doi.org/10.1089/soro.2014.0016.
Connolly F, Walsh CJ, Bertoldi K. Automatic design of fiber-reinforced soft actuators for trajectory matching. Proc Natl Acad Sci. 2017;114(1):51–6. https://doi.org/10.1073/pnas.1615140114.
Yang D, et al. Buckling of elastomeric beams enables actuation of soft machines. Adv Mater. 2015;27(41):6323–7. https://doi.org/10.1002/adma.201503188.
Sun Y, Liang X, Yap HK, Cao J, Ang MH, Hua Yeow RC. Force measurement toward the instability theory of soft pneumatic actuators. IEEE Robot Autom Lett. 2017;2(2):985–92. https://doi.org/10.1109/lra.2017.2656943.
Onal CD, Chen X, Whitesides GM, Rus D. Soft mobile robots with on-board chemical pressure generation. In: Christensen HI, Khatib O, editors. Robotics research: the 15th international symposium ISRR. Cham: Springer; 2017. p. 525–40.
Sun W, Liu F, Ma Z, Li C, Zhou J. Soft mobile robots driven by foldable dielectric elastomer actuators. J Appl Phys. 2016;120(8):084901. https://doi.org/10.1063/1.4960718.
Gossweiler GR, et al. Mechanochemically active soft robots. ACS Appl Mater Interfaces. 2015;7(40):22431–5. https://doi.org/10.1021/acsami.5b06440.
Wang C, et al. Soft ultrathin electronics innervated adaptive fully soft robots. Adv Mater. 2018;30(13):1706695. https://doi.org/10.1002/adma.201706695.
Shepherd RF, et al. Using explosions to power a soft robot. Angew Chem Int Ed. 2013;52(10):2892–6. https://doi.org/10.1002/anie.201209540.
Zhang Z, Bieze TM, Dequidt J, Kruszewski A, Duriez C. Visual servoing control of soft robots based on finite element model. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), 2017. p. 2895–901. https://doi.org/10.1109/iros.2017.8206121.
Zhang Z, Dequidt J, Kruszewski A, Largilliere F, Duriez C. Kinematic modeling and observer based control of soft robot using real-time finite element method. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), 2016. p. 5509–14. https://doi.org/10.1109/iros.2016.7759810.
Picinbono G, Delingette H, Ayache N. Nonlinear and anisotropic elastic soft tissue models for medical simulation. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation (Cat. No.01CH37164), 2001, vol 2. p. 1370–5. https://doi.org/10.1109/robot.2001.932801.
Freutel M, Schmidt H, Dürselen L, Ignatius A, Galbusera F. Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech. 2014;29(4):363–72. https://doi.org/10.1016/j.clinbiomech.2014.01.006.
Yekutieli Y, Sagiv-Zohar R, Hochner B, Flash T. Dynamic model of the octopus arm. II. Control of reaching movements. J Neurophysiol. 2005;94(2):1459–68. https://doi.org/10.1152/jn.00685.2004.
Napadow VJ, Kamm RD, Gilbert RJ. A biomechanical model of sagittal tongue bending. J Biomech Eng. 2002;124(5):547–56. https://doi.org/10.1115/1.1503794.
Webster RJ, Jones BA. Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res. 2010;29(13):1661–83. https://doi.org/10.1177/0278364910368147.
Esteki A, Joseph M. Mansour. A dynamic model of the hand with application in functional neuromuscular stimulation. Annals biomed eng. 1997;25(3):440–51.
Yang T-H, et al. Assessing finger joint biomechanics by applying equal force to flexor tendons in vitro using a novel simultaneous approach. PLoS ONE. 2016;11(8):e0160301. https://doi.org/10.1371/journal.pone.0160301.
Santello M, et al. Hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys Life Rev. 2016;17:1–23. https://doi.org/10.1016/j.plrev.2016.02.001.
Barbagli F, Frisoli K, Salisbury K, Bergamasco M. Simulating human fingers: a soft finger proxy model and algorithm. In: HAPTICS, 2004. p. 9–17.
Ciocarlie M, Lackner C, Allen P. Soft finger model with adaptive contact geometry for grasping and manipulation tasks. In: Second joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems (WHC’07), 2007. p. 219–24. https://doi.org/10.1109/whc.2007.103.
Connolly F, Polygerinos P, Walsh CJ, Bertoldi K. Mechanical programming of soft actuators by varying fiber angle. Soft Robot. 2015;2(1):26–32. https://doi.org/10.1089/soro.2015.0001.
Suzumori K, Endo S, Kanda T, Kato N, Suzuki H. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Proceedings 2007 IEEE international conference on robotics and automation, 2007. p. 4975–80. https://doi.org/10.1109/robot.2007.364246.
Cheney N, MacCurdy R, Clune J, Lipson H. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. ACM SIGEVOlution. 2014;7(1):11–23.
Germann J, Maesani A, Stöckli M, Floreano D. Soft cell simulator: a tool to study soft multi-cellular robots. In: 2013 IEEE International conference on robotics and biomimetics (ROBIO), 2013. p. 1300–5.
Robinson G, Davies JBC. Continuum robots—a state of the art. In: Proceedings 1999 IEEE international conference on robotics and automation (Cat. No.99CH36288C), Detroit, MI, USA, 1999, vol 4. p. 2849–54. https://doi.org/10.1109/robot.1999.774029.
Arkin RC. Behavior-based robotics. Cambridge: MIT Press; 1998.
George Thuruthel T, Ansari Y, Falotico E, Laschi C. Control strategies for soft robotic manipulators: a survey. Soft Robot. 2018;5(2):149–63.
Camarillo DB, Carlson CR, Salisbury JK. Configuration tracking for continuum manipulators with coupled tendon drive. IEEE Trans Robot. 2009;25(4):798–808.
Hannan MW, Walker ID. Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J Robot Syst. 2003;20(2):45–63.
Yu N, Hollnagel C, Blickenstorfer A, Kollias SS, Riener R. Comparison of MRI-compatible mechatronic systems with hydrodynamic and pneumatic actuation. IEEEASME Trans Mechatron. 2008;13(3):268–77.
Daerden F, Lefeber D. Pneumatic artificial muscles: actuators for robotics and automation. Eur J Mech Environ Eng. 2002;47:10–21.
Chirikjian GS, Burdick JW. A modal approach to hyper-redundant manipulator kinematics. IEEE Trans Robot Autom. 1994;10(3):343–54.
Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C. A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In: 2012 IEEE international conference on robotics and automation, 2012. p. 3819–24.
Liegeois A. Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans Syst Man Cybern. 1977;7(12):868–71. https://doi.org/10.1109/TSMC.1977.4309644.
Oudeyer P, Ly O, Rouanet P. Exploring robust, intuitive and emergent physical human-robot interaction with the humanoid robot Acroban. In: 2011 11th IEEE-RAS international conference on humanoid robots, 2011. p. 120–7. https://doi.org/10.1109/humanoids.2011.6100852.
Armbrust C, Proetzsch M, Schäfer B-H, Berns K. A behaviour-based integration of fully autonomous, semi-autonomous, and tele-operated control modes for an off-road robot. 2nd IFAC Symp Telemat Appl. 2010;43(23):191–6. https://doi.org/10.3182/20101005-4-RO-2018.00058.
Matarić MJ, Michaud F. Behavior-based systems. In: Siciliano B, Khatib O, editors. Springer handbook of robotics. Heidelberg: Berlin; 2008. p. 891–909.
Coey JMD. Magnetism and magnetic materials. Cambridge: Cambridge University Press; 2010.
Glatter O, Kratky O. Small angle X-ray scattering. Cambridge: Academic Press; 1982.
Horkay F, Zrinyi M. Mechanochemical energy conversion of neutral polymer gels. Makromol Chem Macromol Symp. 1989;30(1):133–43. https://doi.org/10.1002/masy.19890300113.
Tasoglu S, et al. Paramagnetic levitational assembly of hydrogels. Adv Mater. 2013;25(8):1137–43. https://doi.org/10.1002/adma.201200285.
Tone T, Suzuki K. A ferrofluid-based robotic sheet for liquid manipulation by using vibration control. In: 2017 13th IEEE conference on automation science and engineering (CASE), 2017. p. 776–81.
Leon-Rodriguez H, Le VH, Ko SY, Park J-O, Park S. Ferrofluid soft-robot bio-inspired by Amoeba locomotion. In: 2015 15th international conference on control, automation and systems (ICCAS), 2015, p. 1833–8.
Laschi C, Cianchetti M. Soft robotics: new perspectives for robot bodyware and control. Front Bioeng Biotechnol. 2014;2:3.
Laschi C, et al. A bio-inspired predictive sensory-motor coordination scheme for robot reaching and preshaping. Auton Robots. 2008;25(1–2):85–101.
Asuni G, Teti G, Laschi C, Guglielmelli E, Dario P. Extension to end-effector position and orientation control of a learning-based neurocontroller for a humanoid arm. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, 2006. p. 4151–6.
Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C. Neural network and jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature. IEEE Trans Robot. 2015;31(4):823–34.
Giorelli M, Renda F, Ferri G, Laschi C. A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, 2013. p. 5033–9.
Trivedi D, Rahn CD, Kier WM, Walker ID. Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech. 2008;5(3):99–117. https://doi.org/10.1080/11762320802557865.
Lu X, Xu W, Li X. A soft robotic tongue—mechatronic design and surface reconstruction. IEEEASME Trans Mechatron. 2017;22(5):2102–10. https://doi.org/10.1109/TMECH.2017.2748606.
Marchese AD, Onal CD, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 2014;1(1):75–87. https://doi.org/10.1089/soro.2013.0009.
Pausley ME, Furst SJ, Talla V, Seelecke S. Electro-mechanical behavior of a shape memory alloy actuator. In: Behavior and mechanics of multifunctional materials and composites 2009, 2009, vol 7289. p. 72890T.
Enkovaara J, et al. Magnetically driven shape memory alloys. Mater Sci Eng A. 2004;378(1):52–60. https://doi.org/10.1016/j.msea.2003.10.330.
Jaffe B, Cook WR, Jaffe H. Piezoelectric ceramics. Saint Louis: Elsevier; 2012.
Shankar R, Ghosh TK, Spontak RJ. Dielectric elastomers as next-generation polymeric actuators. Soft Matter. 2007;3(9):1116–29. https://doi.org/10.1039/B705737G.
Kularatne RS, Kim H, Boothby JM, Ware TH. Liquid crystal elastomer actuators: synthesis, alignment, and applications. J Polym Sci Part B Polym Phys. 2017;55(5):395–411. https://doi.org/10.1002/polb.24287.
Kadooka K, Taya M. Review on viscoelastic behavior of dielectric polymers and their actuators. In: Yoseph B-C, editor. Electroactive polymer actuators and devices (EAPAD) XX. SPIE Digital Library. 2018, vol 10594. p. 105940 M. https://doi.org/10.1117/12.2295116.
Choi ST, Kwon JO, Bauer F. Multilayered relaxor ferroelectric polymer actuators for low-voltage operation fabricated with an adhesion-mediated film transfer technique. Sens Actuators Phys. 2013;203:282–90. https://doi.org/10.1016/j.sna.2013.08.049.
Zhao X, Suo Z. Electrostriction in elastic dielectrics undergoing large deformation. J Appl Phys. 2008;104(12):123530. https://doi.org/10.1063/1.3031483.
Lima MD, et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science. 2012;338(6109):928–32. https://doi.org/10.1126/science.1226762.
Madden JD, Madden PG, Hunter IW. Conducting polymer actuators as engineering materials. In: Yoseph B-C, editor. Smart structures and materials 2002: electroactive polymer actuators and devices (EAPAD). SPIE Digital Library. 2002, vol 4695. p. 176–90. https://doi.org/10.1117/12.475163.
Shahinpoor M. Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochim Acta. 2003;48(14):2343–53. https://doi.org/10.1016/S0013-4686(03)00224-X.
Jo C, Pugal D, Oh I-K, Kim KJ, Asaka K. Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog Polym Sci. 2013;38(7):1037–66. https://doi.org/10.1016/j.progpolymsci.2013.04.003.
Akhavan J. Electro-rheological polymers. J Aerosp Eng. 2007;221(4):577–87.
Calisti M, et al. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir Biomim. 2011;6(3):036002. https://doi.org/10.1088/1748-3182/6/3/036002.
Cheng NG, et al. Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In: 2012 IEEE international conference on robotics and automation, 2012. p. 4328–33.
Takashi M, Toshiyuki H. Miniature five-fingered robot hand driven by shape memory alloy actuators. In: Proceedings of the IASTED international conference on robotics and applications, 2006. p. 174–9.
Yoneyama T, Miyazaki S, editors. Shape memory alloys for biomedical applications. Cambridge: Woodhead Publishing; 2009. p. 327–37.
Park H-B, Kim D-R, Kim H-J, Wang W, Han M-W, Ahn S-H. Design and analysis of artificial muscle robotic elbow joint using shape memory alloy actuator. Int J Precis Eng Manuf. 2019. https://doi.org/10.1007/s12541-019-00240-8.
Otsuka K, Kakeshita T. Science and technology of shape-memory alloys: new developments. MRS Bull. 2002;27(2):91–100. https://doi.org/10.1557/mrs2002.43.
Huang W. On the selection of shape memory alloys for actuators. Mater Des. 2002;23(1):11–9. https://doi.org/10.1016/S0261-3069(01)00039-5.
Duerig TW, Melton KN, Stöckel D, Wayman CM, editors. Engineering aspects of shape memory alloys. Oxford: Butterworth-Heinemann; 1990.
Cverna F, ASM International, editors. ASM ready reference. Thermal properties of metals. Materials Park: ASM International; 2002.
Mohd Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015. 2014;56:1078–113. https://doi.org/10.1016/j.matdes.2013.11.084.
Reginald DesRoches, Jason McCormick, Michael Delemont. Cyclic properties of superelastic shape memory alloy wires and bars. J Struct Eng. 2004;130(1):38–46. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(38).
Rodrigue H, Wang W, Kim D-R, Ahn S-H. Curved shape memory alloy-based soft actuators and application to soft gripper. Compos Struct. 2017;176:398–406. https://doi.org/10.1016/j.compstruct.2017.05.056.
Lin H-T, Leisk GG, Trimmer B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir Biomim. 2011;6(2):026007. https://doi.org/10.1088/1748-3182/6/2/026007.
Gauthier J-Y, Hubert A, Abadie J, Lexcellent N, Chaillet. Multistable actuator based on magnetic shape memory alloy. In: Proceedings of the 10th international conference on new actuators, remen, Germany, 2006, p. 787–90.
Lagoudas DC, editor. Shape memory alloys: modeling and engineering applications. New York: Springer; 2008.
Minase J, Lu T-F, Cazzolato B, Grainger S. A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators. Precis Eng. 2010;34(4):692–700. https://doi.org/10.1016/j.precisioneng.2010.03.006.
Kim B, Park S, Jee CY, Yoon S-J. An earthworm-like locomotive mechanism for capsule endoscopes. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005, p. 2997–3002. https://doi.org/10.1109/iros.2005.1545608.
Ming A, Hashimoto K, Zhao W, Shimojo M. Fundamental analysis for design and control of soft fish robots using piezoelectric fiber composite. In: 2013 IEEE international conference on mechatronics and automation, 2013, p. 219–24. https://doi.org/10.1109/icma.2013.6617921.
Kellaris N, Gopaluni Venkata V, Smith GM, Mitchell SK, Keplinger C. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci Robot. 2018;3(14):eaar3276. https://doi.org/10.1126/scirobotics.aar3276.
Davidson JR, Krebs HI. An electrorheological fluid actuator for rehabilitation robotics. IEEEASME Trans Mechatron. 2018;23(5):2156–67. https://doi.org/10.1109/TMECH.2018.2869126.
Sohn J, Kim G-W, Choi S-B. A state-of-the-art review on robots and medical devices using smart fluids and shape memory alloys. Appl Sci. 2018;8(10):1928. https://doi.org/10.3390/app8101928.
Hamlen RP, Kent CE, Shafer SN. Electrolytically activated contractile polymer. Nature. 1965;206(4989):1149–50. https://doi.org/10.1038/2061149b0.
Acome E, et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science. 2018;359(6371):61–5. https://doi.org/10.1126/science.aao6139.
Oguro K. Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. J Micromach Soc. 1992;5:27–30.
Asaka K, Oguro K, Nishimura Y, Mizuhata M, Takenaka H. Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J. 1995;27(4):436–40. https://doi.org/10.1295/polymj.27.436.
Mukai K, et al. Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: application to fast-moving, low-voltage electromechanical actuators operable in air. Adv Mater. 2009;21(16):1582–5. https://doi.org/10.1002/adma.200802817.
Cameron B, Hall MD. Recent concepts in the treatment of the limb-deficient child. Artif Limbs Rev Curr Dev. 1966;2(1):36–51.
Miriyev A, Stack K, Lipson H. Soft material for soft actuators. Nat Commun. 2017;8(1):596. https://doi.org/10.1038/s41467-017-00685-3.
Mosadegh B, et al. Pneumatic networks for soft robotics that actuate rapidly. Adv Funct Mater. 2014;24(15):2163–70. https://doi.org/10.1002/adfm.201303288.
Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ. Soft robotic glove for combined assistance and at-home rehabilitation. Wearable Robot. 2015;73:135–43. https://doi.org/10.1016/j.robot.2014.08.014.
Wang W, Ahn S-H. Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping. Soft Robot. 2017;4(4):379–89. https://doi.org/10.1089/soro.2016.0081.
Merz R, Prinz FB, Ramaswami K, Terk M, Weiss LE. Shape deposition manufacturing. International Solid Freeform Fabrication Symposium. 1994. https://doi.org/10.15781/t2bk1781c.
Rodrigue H, Wei W, Bhandari B, Ahn S-H. Fabrication of wrist-like SMA-based actuator by double smart soft composite casting. Smart Mater Struct. 2015;24(12):125003. https://doi.org/10.1088/0964-1726/24/12/125003.
Kumar A. Methods and materials for smart manufacturing: additive manufacturing, internet of things, flexible sensors and soft robotics. Manuf Lett. 2018;15:122–5. https://doi.org/10.1016/j.mfglet.2017.12.014.
Loh CS, Yokoi H, Arai T. New shape memory alloy actuator: design and application in the prosthetic hand. In: 2005 IEEE engineering in medicine and biology 27th annual conference, Shanghai, China, 2005. p. 6900–3, https://doi.org/10.1109/iembs.2005.1616092.
Peele BN, Wallin TJ, Zhao H, Shepherd RF. 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspir Biomim. 2015;10(5):055003. https://doi.org/10.1088/1748-3190/10/5/055003.
Gao W, et al. The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des. 2015;69:65–89. https://doi.org/10.1016/j.cad.2015.04.001.
Morin SA, et al. Using ‘Click-e-Bricks’ to make 3D elastomeric structures. Adv Mater. 2014;26(34):5991–9. https://doi.org/10.1002/adma.201401642.
Carpi F, Smela E, editors. Biomedical applications of electroactive polymer actuators. Chichester: Wiley; 2009.
Kim KJ, Tadokoro S, editors. Electroactive polymers for robotic applications: artificial muscles and sensors. London: Springer; 2007.
Shahinpoor M, Kim KJ, Mojarrad M. Artificial muscles: applications of advanced polymeric nanocomposites. New York: Taylor & Francis; 2007.
Higuchi T, Suzumori K, Tadokoro S, editors. Next-generation actuators leading breakthroughs. New York: Springer; 2010.
Sahrmann SA. Diagnosis by the physical therapist—a prerequisite for treatment. Phys Ther. 1988;68(11):1703–6. https://doi.org/10.1093/ptj/68.11.1703.
Anderson IA, Gisby TA, McKay TG, O’Brien BM, Calius EP. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J Appl Phys. 2012;112(4):041101. https://doi.org/10.1063/1.4740023.
Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S. Collapse of gels in an electric field. Science. 1982;218(4571):467–9. https://doi.org/10.1126/science.218.4571.467.
Ogawa N, Hashimoto M, Takasaki M, Hirai T. Characteristics evaluation of PVC gel actuators. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, St. Louis, MO, USA, 2009. p. 2898–2903. https://doi.org/10.1109/iros.2009.5354417.
Wales K, Frederick S. Surgical instrument having fluid actuated opposing jaws. US 7,559,452, 2009.
Nilsson M, Ingvast J, Wikander J, von Holst H. The soft extra muscle system for improving the grasping capability in neurological rehabilitation. In: 2012 IEEE-EMBS conference on biomedical engineering and sciences, 2012. p. 412–7. https://doi.org/10.1109/iecbes.2012.6498090.
Jayatilake D, Suzuki K. A soft actuator based expressive mask for facial paralyzed patients. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, 2008. p. 4048–53. https://doi.org/10.1109/iros.2008.4651177.
Shahinpoor M, Soltanpour D. Surgical correction of ptosis by polymeric artificial muscles. 7,625,404, 2005.
Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Kitamori T. A micro-spherical heart pump powered by cultured cardiomyocytes. Lab Chip. 2007;7(2):207–12. https://doi.org/10.1039/B612082B.
Roche ET, et al. Soft robotic sleeve supports heart function. Sci Transl Med. 2017;9(373):eaaf392. https://doi.org/10.1126/scitranslmed.aaf3925.
Fang B-K, Ju M-S, Lin C-CK. A new approach to develop ionic polymer–metal composites (IPMC) actuator: fabrication and control for active catheter systems. Sens Actuators Phys. 2007;137(2):321–9. https://doi.org/10.1016/j.sna.2007.03.024.
Fang BK, Ju MS, Lin CCK. Development of active guide-wire for cardiac catheterization by using ionic polymer-metal composites. In: 13th International conference on biomedical engineering, 2009. p. 340–3.
Weber J, Robaina S. (2010). U.S. Patent No. 7,767,219. Washington, DC: U.S. Patent and Trademark Office.
Eidenschink T, et al. Medical balloon incorporating electroactive polymer and methods of making and using the same. US7919910B2, 2008.
Weber J, Eidenschink T, Elizondo D, Simer L. Electrically actuated medical devices. 8,398,693, 2013.
Boston Scientific SciMed Inc. Electroactive polymer actuated medical devices. U. S. Pat. Trademark Off., vol. US Patent 6,969,395 B2, 2008.
Shahinpoor M, Soltanpour D. Implantable micro-pump assembly. U. S. Pat. Trademark Off., vol. US Patent 6,589,198 Bl. 2003.
Hood LE, et al. (2012). U.S. Patent No. 8,273,075. Washington, DC: U.S. Patent and Trademark Office.
Pfeifer R, Lungarella M, Iida F. The challenges ahead for bio-inspired ‘soft’ robotics. Commun ACM. 2012;55(11):76. https://doi.org/10.1145/2366316.2366335.
Mirfakhrai T, Madden JDW, Baughman RH. Polymer artificial muscles. Mater Today. 2007;10(4):30–8. https://doi.org/10.1016/S1369-7021(07)70048-2.
Pelrine R, et al. Dielectric elastomer artificial muscle actuators: toward biomimetic motion. in: Presented at the SPIE’s 9th annual international symposium on smart structures and materials, San Diego, CA, 2002. p. 126–37. https://doi.org/10.1117/12.475157.
Muth JT, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater. 2014;26(36):6307–12. https://doi.org/10.1002/adma.201400334.
Wehner M, et al. Pneumatic energy sources for autonomous and wearable soft robotics. Soft Robot. 2014;1(4):263–74. https://doi.org/10.1089/soro.2014.0018.
Lu N, Kim D-H. Flexible and stretchable electronics paving the way for soft robotics. Soft Robot. 2014;1(1):53–62. https://doi.org/10.1089/soro.2013.0005.
Tajima R, Kagami S, Inaba M, Inoue H. Development of soft and distributed tactile sensors and the application to a humanoid robot. Adv Robot. 2002;16(4):381–97. https://doi.org/10.1163/15685530260174548.