Biomedical applications of nanotechnology

Biophysical Reviews - Tập 9 Số 2 - Trang 79-89 - 2017
Ana Paula Ramos1, Marcos Antônio Eufrásio Cruz1, Camila Bussola Tovani1, Pietro Ciancaglini1
1Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Ribeirão Preto, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abukabda AB, Stapleton PA, Nurkiewicz TR (2016) Metal nanomaterial toxicity variations within the vascular system. Curr Environ Health Rep 3:379–391. doi: 10.1007/s40572-016-0112-1

Akbarzadeh A, Rezaei-sadabady R, Davaran S et al (2013) Liposome : classification, preparation, and applications. Nanoscale Res Lett 8:1. doi: 10.1186/1556-276X-8-102

Albrektsson T, Brånemark P, Hansson H, Lindström J (1981) Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop 52:155–170. doi: 10.3109/17453678108991776

Alt V, Bechert T, Steinrücke P et al (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391. doi: 10.1016/j.biomaterials.2003.10.078

Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681. doi: 10.1016/S0142-9612(99)00242-2

Anselme K, Bigerelle M, Noel B et al (2000) Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 49:155–166. doi: 10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J

Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28:3074–82. doi: 10.1016/j.biomaterials.2007.03.013

Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668. doi: 10.1016/S0022-2836(64)80115-7

Barbosa SC, Cilli EM, Dias LG et al (2011) Labaditin, a cyclic peptide with rich biotechnological potential: preliminary toxicological studies and structural changes in water and lipid membrane environment. Amino Acids 40:135–144. doi: 10.1007/s00726-010-0648-6

Benech RO, Kheadr EE, Lacroix C et al (2002) Antibacterial activities of nisin Z encapsulated in liposomes or produced in situ by mixed culture during cheddar cheese ripening antibacterial activities of nisin Z encapsulated in liposomes or produced in situ by mixed culture during cheddar cheese ripe. Appl Environ Microbiol 68:5607–5619. doi: 10.1128/AEM.68.8.3683

Berg JM, Eriksson LGT, Claesson PM, Borve KGN (1994) Three-component langmuir-blodgett films with a controllable degree of polarity. Langmuir 10:1225–1234. doi: 10.1021/la00016a041

Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306. doi: 10.1016/j.addr.2008.03.013

Bilia AR, Guccione C, Isacchi B et al (2014) Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med. doi: 10.1155/2014/651593

Bolean M, Simão AMS, Favarin BZ et al (2010) The effect of cholesterol on the reconstitution of alkaline phosphatase into liposomes. Biophys Chem 152:74–79. doi: 10.1016/j.bpc.2010.08.002

Bolean M, Simão A, Favarin B (2011) Thermodynamic properties and characterization of proteoliposomes rich in microdomains carrying alkaline phosphatase. Biophys Chem 158:111–118. doi: 10.1016/j.bpc.2011.05.019

Bolean M, Simão AMS, Kiffer-Moreira T et al (2015) Proteoliposomes with the ability to transport Ca2+ into the vesicles and hydrolyze phosphosubstrates on their surface. Arch Biochem Biophys 584:79–89. doi: 10.1016/j.abb.2015.08.018

Bolfarini GC, Siqueira-Moura MP, Demets GJF et al (2012) In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbituril zinc phthalocyanine complex on melanoma. J Photochem Photobiol B 115:1–4. doi: 10.1016/j.jphotobiol.2012.05.009

Boyan BD, Dean DD, Lohmann CH, et al. (2001) The titanium–bone cell interface in vitro: the role of the surface in promoting osteointegration. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Springer, Berlin, Heidelberg, pp 561–585

Brammer KS, Frandsen CJ, Jin S (2012) TiO2 nanotubes for bone regeneration. Trends Biotechnol 30:315–322. doi: 10.1016/j.tibtech.2012.02.005

Brett PM, Harle J, Salih V et al (2004) Roughness response genes in osteoblasts. Bone 35:124–33. doi: 10.1016/j.bone.2004.03.009

Brunetti V, Maiorano G, Rizzello L et al (2010) Neurons sense nanoscale roughness with nanometer sensitivity. Proc Natl Acad Sci USA 107:6264–6269. doi: 10.1073/pnas.0914456107

Camolezi FL, Daghastanli KRP, Magalhães PP et al (2002) Construction of an alkaline phosphatase-liposome system: a tool for biomineralization study. Int J Biochem Cell Biol 34:1091–1101. doi: 10.1016/S1357-2725(02)00029-8

Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles : size-dependent generation of reactive oxygen species unique cellular interaction of silver nanoparticles : size-dependent generation of reactive. J Phys Chem B 112:13608–13619. doi: 10.1021/jp712087m

Caseli L, Nobre TM, Ramos AP et al (2015) The role of langmuir monolayers to understand biological events. ACS Symp Ser 1215:65–88. doi: 10.1021/bk-2015-1215.ch004

Castner DG, Ratner BD (2002) Biomedical surface science: foundations to frontiers. Surface Sci 500(1–3):28–60

Cedervall T, Lynch I, Lindman S et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055. doi: 10.1073/pnas.0608582104

Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588. doi: 10.1016/j.tibtech.2010.07.006

Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12. doi: 10.1016/j.toxlet.2007.10.004

Chen Z, Kang L, Wang Z et al (2014) Recent progress in the research of biomaterials regulating cell behavior. RSC Adv 4:63807–63816. doi: 10.1039/C4RA05534A

Ciancaglini P, Simão AMS, Bolean M et al (2012) Proteoliposomes in nanobiotechnology. Biophys Rev 4:67–81. doi: 10.1007/s12551-011-0065-4

Costa N, Maquis PM (1998) Biomimetic processing of calcium phosphate coating. Med Eng Phys 20:602–606

Costa DO, Allo BA, Klassen R et al (2012) Control of surface topography in biomimetic calcium phosphate coatings. Langmuir 28:3871–3880. doi: 10.1021/la203224a

Cruz MAE, Ramos AP (2016) Bioactive CaCO3/poly(acrylic acid)/chitosan hybrid coatings deposited on titanium. Surf Coat Technol 294:145–152. doi: 10.1016/j.surfcoat.2016.03.084

Cruz MAE, Ruiz GCM, Faria AN et al (2016) Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces. Appl Surf Sci 370:459–468. doi: 10.1016/j.apsusc.2015.12.250

Cüneyt Tas A (2000) Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials 21:1429–1438. doi: 10.1016/S0142-9612(00)00019-3

Daghastanli KRP, Ferreira RB, Thedei G et al (2004) Lipid composition-dependent incorporation of multiple membrane proteins into liposomes. Colloids Surf B Biointerfaces 36:127–137. doi: 10.1016/j.colsurfb.2004.03.015

De Lima SH, Lopes ML, Maggio B, Ciancaglini P (2005) Na, K-ATPase reconstituted in liposomes: Effects of lipid composition on hydrolytic activity and enzyme orientation. Colloids Surf B Biointerfaces 41:239–248. doi: 10.1016/j.colsurfb.2004.12.013

de Souza ID, Cruz MAE, de Faria AN et al (2014a) Formation of carbonated hydroxyapatite films on metallic surfaces using dihexadecyl phosphate-LB film as template. Colloids Surf B Biointerfaces 118C:31–40. doi: 10.1016/j.colsurfb.2014.03.029

de Souza ID, Cruz MAE, de Faria AN et al (2014b) Formation of carbonated hydroxyapatite films on metallic surfaces using dihexadecyl phosphate-LB film as template. Colloids Surf B Biointerfaces 118:31–40. doi: 10.1016/j.colsurfb.2014.03.029

Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process : III.Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835

Decher G, Eckle M, Schmitt J, Struth B (1998) Layer-by-layer assembled multicomposite films. Curr Opin Colloid Interface Sci 3:32–39. doi: 10.1016/S1359-0294(98)80039-3

Deng Z, Mortimer G, Schiller T (2009) Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:455101. doi: 10.1088/0957-4484/20/45/455101

Dhawan A, Sharma V, Parmar D (2009) Nanomaterials: a challenge for toxicologists. Nanotoxicology 3:1–9. doi: 10.1080/17435390802578595

Dong Y, Yang J, Zhang J, Zhang X (2016) Nano-delivery vehicles/adjuvants for DNA vaccination against HIV. J Nanosci Nanotechnol 16:2126–2133. doi: 10.1166/jnn.2016.10947

Ehrlich H (2010) Chitin and collagen as universal and alternative templates in biomineralization. Int Geol Rev 52:661–699. doi: 10.1080/00206811003679521

Elkhodiry MA, Momah CC, Suwaidi SR et al (2016) Synergistic nanomedicine: passive, active, and ultrasound-triggered drug delivery in cancer treatment. J Nanosci Nanotechnol 16:1–18. doi: 10.1166/jnn.2016.11124

Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137. doi: 10.1016/j.addr.2011.09.001

Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62:362–374. doi: 10.1016/j.addr.2009.11.008

Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17:2950–2962. doi: 10.1016/j.bmc.2009.02.043

Faria PEP, Felipucci DNB, Simioni AR et al (2015) Effects of photodynamic process (PDP) in implant osseointegration: a histologic and histometric study in dogs. Clin Implant Dent Relat Res 17:879–890. doi: 10.1111/cid.12204

Faucheux N, Schweiss R, Lützow K et al (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25:2721–2730. doi: 10.1016/j.biomaterials.2003.09.069

Fei Yin Z, Wu L, Gui Yang H, Hua Su Y (2013) Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys 15:4844. doi: 10.1039/c3cp43938k

Feng B, Weng J, Yang BC et al (2003) Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 24:4663–4670. doi: 10.1016/S0142-9612(03)00366-1

Ferris DM, Moodie GD, Dimond PM et al (1999) RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 20:2323–2331

Fricain JC, Bareille R, Ulysse F et al (1998) Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite of calcite form. J Biomed Mater Res 42:96–102. doi: 10.1002/(SICI)1097-4636(199810)42:1<96::AID-JBM12>3.0.CO;2-M

Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26:4139–4147. doi: 10.1016/j.biomaterials.2004.09.014

Gao W, Thamphiwatana S, Angsantikul P, Zhang L (2014) Nanoparticle approaches against bacterial infections. Wiley Interdiscip Rev Nanomedicine Nanobiotechnol 6:532–547. doi: 10.1002/wnan.1282

Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S (2014) Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int 2014:394264. doi: 10.1155/2014/394264

Guidelli EJ, Ramos AP, Zaniquelli MED, Baffa O (2011) Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from hevea brasiliensis. Spectrochim Acta A Mol Biomol Spectrosc 82:140–145. doi: 10.1016/j.saa.2011.07.024

Guidelli EJ, Ramos AP, Zaniquelli MED et al (2012) Synthesis and characterization of silver/alanine nanocomposites for radiation detection in medical applications: the influence of particle size on the detection properties. Nanoscale 4:2884–2893. doi: 10.1039/c2nr30090g

Guidelli ÉJ, Kinoshita A, Ramos AP, Baffa O (2013) Silver nanoparticles delivery system based on natural rubber latex membranes. J Nanoparticle Res 15:1536. doi: 10.1007/s11051-013-1536-2

Guidelli EJ, Ramos AP, Baffa O (2016) Silver nanoparticle films for metal enhanced luminescence: toward development of plasmonic radiation detectors for medical applications. Sensors Actuators B Chem 224:248–255. doi: 10.1016/j.snb.2015.10.024

Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. doi: 10.1016/j.biomaterials.2004.10.012

Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39. doi: 10.2217/17435889.2.1.23

Han YJ, Aizenberg J (2003) Face-selective nucleation of calcite on self-assembled monolayers of alkanethiols: effect of the parity of the alkyl chain. Angew Chem Int Ed 42:3668–3670. doi: 10.1002/anie.200351655

Hanawa T (2011) A comprehensive review of techniques for biofunctionalization of titanium. J Periodontal Implant Sci 41:263–272. doi: 10.5051/jpis.2011.41.6.263

Hartono D, Qin WJ, Yang KL, Yung LYL (2009) Imaging the disruption of phospholipid monolayer by protein-coated nanoparticles using ordering transitions of liquid crystals. Biomaterials 30:843–849. doi: 10.1016/j.biomaterials.2008.10.037

He J, Zhou W, Zhou X et al (2008) The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J Mater Sci Mater Med 19:3465–3472. doi: 10.1007/s10856-008-3505-3

Hendesi H, Barbe MF, Safadi FF et al (2015) Integrin mediated adhesion of osteoblasts to connective tissue growth factor (CTGF/CCN2) induces cytoskeleton reorganization and cell differentiation. PLoS One 10:1–20. doi: 10.1371/journal.pone.0115325

Hong H, Shi J, Yang Y et al (2011) Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett 11:3744–3750. doi: 10.1021/nl201782m

Hotchkiss KM, Reddy GB, Hyzy SL et al (2016) Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater 31:425–434. doi: 10.1016/j.actbio.2015.12.003

Ierardi DF, Pizauro JM, Ciancaglini P (2002) Erythrocyte ghost cell-alkaline phosphatase: construction and characterization of a vesicular system for use in biomineralization studies. Biochim Biophys Acta Biomembr 1567:183–192. doi: 10.1016/S0005-2736(02)00615-6

Jalota S, Bhaduri S, Tas A (2007) Osteoblast proliferation on neat and apatite-like calcium phosphate-coated titanium foam scaffolds. Mater Sci Eng C 27:432–440. doi: 10.1016/j.msec.2006.05.052

Jayaraman M, Meyer U, Bühner M et al (2004) Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials 25:625–631. doi: 10.1016/S0142-9612(03)00571-4

Jiang J, Oberdörster G, Elder A et al (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2:33–42. doi: 10.1080/17435390701882478

Jin HE, Jang J, Chung J et al (2015) Biomimetic self-templated hierarchical structures of collagen-like peptide amphiphiles. Nano Lett 15:7138–7145. doi: 10.1021/acs.nanolett.5b03313

Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv 8:343–357. doi: 10.1517/17425247.2011.554818

Kasemo B (2002) Biological surface science. Surf Sci 500:656–677. doi: 10.1016/S0039-6028(01)01809-X

Khang D, Choi J, Im Y-M et al (2012) Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials 33:5997–6007. doi: 10.1016/j.biomaterials.2012.05.005

Kilpadi KL, Chang PL, Bellis SL (2001) Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res 57:258–267. doi: 10.1002/1097-4636(200111)57:2<258::AID-JBM1166>3.0.CO;2-R

Kim JS, Yoon T-J, Yu KN et al (2005) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347. doi: 10.1093/toxsci/kfj027

Klymov A, Prodanov L, Lamers E et al (2013) Understanding the role of nano-topography on the surface of a bone-implant. Biomater Sci 1:135–151. doi: 10.1039/C2BM00032F

Koch FP, Weng D, Krämer S et al (2010) Osseointegration of one-piece zirconia implants compared with a titanium implant of identical design: a histomorphometric study in the dog. Clin Oral Implants Res 21:350–356. doi: 10.1111/j.1600-0501.2009.01832.x

Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017

Kokubo T, Kushitani H, Sakka S et al (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res 24:721–734. doi: 10.1002/jbm.820240607

Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72:370–377. doi: 10.1016/j.ejpb.2008.08.009

Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed 50:1260–1278. doi: 10.1002/anie.201001037

Kubota S, Johkura K, Asanuma K et al (2004) Titanium oxide nanotubes for bone regeneration. J Mater Sci Mater Med 15:1031–1035. doi: 10.1023/B:JMSM.0000042689.78768.77

Kuna JJ, Voïtchovsky K, Singh C et al (2009) The effect of nanometre-scale structure on interfacial energy. Nat Mater 8:837–842. doi: 10.1038/nmat2534

Kunzmann A, Andersson B, Thurnherr T et al (2011) Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta Gen Subj 1810:361–373. doi: 10.1016/j.bbagen.2010.04.007

Kwok DY, Neumann AW (1999) Contact angle measurement and contact angle interpretation. Adv Colloid Interface Sci 81:167–249. doi: 10.1016/S0001-8686(98)00087-6

Lampin M, Warocquier-Clérout LC et al (1997) Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res 36:99–108

Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854. doi: 10.1016/j.dental.2006.06.025

Liao H, Nehl CL, Hafner JH (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine (London) 1:201–208. doi: 10.2217/17435889.1.2.201

Lim JY, Taylor AF, Li Z et al (2005) Integrin expression and osteopontin regulation in human fetal osteoblastic cells mediated by substratum surface characteristics. Tissue Eng 11:19–29. doi: 10.1089/ten.2005.11.19

Liu D, Yang F, Xiong F, Gu N (2016a) The smart drug delivery system and its clinical potential. Theranostics 6:1306–1323. doi: 10.7150/thno.14858

Liu H, Zhang J, Chen X et al (2016b) Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. Nanoscale 8:7808–7826. doi: 10.1039/c6nr00147e

Liu T-Y, Liao H-C, Lin C-C et al (2006) Biofunctional ZnO nanorod arrays grown on flexible substrates. Langmuir 22:5804–5809. doi: 10.1021/la052363o

Liu Y, Chen C (2015) Role of nanotechnology in HIV/AIDS vaccine development. Adv Drug Deliv Rev 103:76–89. doi: 10.1016/j.addr.2016.02.010

Longo JPF, Leal SC, Simioni AR et al (2012) Photodynamic therapy disinfection of carious tissue mediated by aluminum-chloride-phthalocyanine entrapped in cationic liposomes: an in vitro and clinical study. Lasers Med Sci 27:575–584. doi: 10.1007/s10103-011-0962-6

Lopez E, Vidal B, Berland S et al (1992) Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell 24:667–679. doi: 10.1016/0040-8166(92)90037-8

Lundqvist M, Stigler J, Cedervall T et al (2011) The evolution of the protein corona arouns nanoparticles: a test study. ACS Nano 5:7503–7509

Lvov Y, Ariga K, Ichinose I, Kunitake T (1995) Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc 117:6117–6123. doi: 10.1021/ja00127a026

Lynch I, Dawson KA (2008) The key role of protein-nanoparticle interactions in nanomedicine and. Nano Today 3:40–47

Madni MA, Sarfraz M, Rehman M et al (2014) Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci 17:401–426

Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338. doi: 10.1021/cr2002596

Martin JY, Schwartz Z, Hummert TW et al (1995) Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 29:389–401. doi: 10.1002/jbm.820290314

McNamara LE, McMurray RJ, Biggs MJP et al (2010) Nanotopographical control of stem cell differentiation. J Tissue Eng 2010:120623. doi: 10.4061/2010/120623

Menzies KL, Jones L (2010) The impact of contact angle on the biocompatibility of biomaterials. Optom Vis Sci 87:387–399. doi: 10.1097/OPX.0b013e3181da863e

Moyano DF, Rotello VM (2011) Nano meets biology: structure and function at the nanoparticle interface. Langmuir 27:10376–10385. doi: 10.1021/la2004535

Nogueira LFB, Maniglia BC, Pereira LS et al (2016) Formation of carrageenan-CaCO3 bioactive membranes. Mater Sci Eng C 58:1–6. doi: 10.1016/j.msec.2015.08.021

Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22. doi: 10.1016/j.envpol.2007.06.006

Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105. doi: 10.1111/j.1365-2796.2009.02187.x

Oh J, Feldman MD, Kim J et al (2006) Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound. Nanotechnology 17:4183–4190. doi: 10.1088/0957-4484/17/16/031

Olszta MJ, Cheng X, Jee SS et al (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Rep 58:77–116. doi: 10.1016/j.mser.2007.05.001

Özkurt Z, Kazazoğlu E (2011) Zirconia dental implants: a literature review. J Oral Implantol 37:367–376. doi: 10.1563/AAID-JOI-D-09-00079

Pantarotto D, Briand J-P, Prato M, Bianco A (2004a) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 1:16–17. doi: 10.1039/b311254c

Pantarotto D, Singh R, McCarthy D et al (2004b) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 43:5242–5246. doi: 10.1002/anie.200460437

Pastorin G, Wu W, Wieckowski S et al (2006) Double functionalization of carbon nanotubes for multimodal drug delivery. Chem Commun (Camb) 1:1182–1184. doi: 10.1039/b516309a

Pastorino L, Dellacasa E, Scaglione S et al (2014) Oriented collagen nanocoatings for tissue engineering. Colloids Surf B: Biointerfaces 114:372–378. doi: 10.1016/j.colsurfb.2013.10.026

Piattelli A, Podda G, Scarano A (1997) Clinical and histological results in alveolar ridge enlargement using coralline calcium carbonate. Biomaterials 18:623–627. doi: 10.1016/S0142-9612(96)00158-5

Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

Puleo DA, Nanci A (1999) Understanding and controlling the bone–implant interface. Biomaterials 20:2311–2321

Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99. doi: 10.1146/annurev.matsci.38.060407.132434

Rack HJ, Qazi JI (2006) Titanium alloys for biomedical applications. Mater Sci Eng C 26:1269–1277. doi: 10.1016/j.msec.2005.08.032

Rammelt S, Illert T, Bierbaum S et al (2006) Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 27:5561–5571. doi: 10.1016/j.biomaterials.2006.06.034

Ramos AP, Nobre TM, Montoro LA, Zaniquelli MED (2008) Calcium carbonate particle growth depending on coupling among adjacent layers in hybrid LB/LbL films. J Phys Chem B 112:14648–54. doi: 10.1021/jp8023793

Ramos AP, Espimpolo DM, Zaniquelli MED (2012) Influence of the type of phospholipid head and of the conformation of the polyelectrolyte on the growth of calcium carbonate thin films on LB/LbL matrices. Colloids Surf B: Biointerfaces 95:178–185. doi: 10.1016/j.colsurfb.2012.02.040

Ravi-Kumar MN (2000) Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 3:234–258

Reimhult E (2015) Nanoparticle-triggered release from lipid membrane vesicles. New Biotechnol 32:665–672. doi: 10.1016/j.nbt.2014.12.002

Riehle MO, Dalby MJ, Johnstone H et al (2003) Cell behaviour of rat calvaria bone cells on surfaces with random nanometric features. Mater Sci Eng C 23:337–340. doi: 10.1016/S0928-4931(02)00282-5

Rigos CF, Nobre TM, Zaniquelli MED et al (2008) The association of Na, K-ATPase subunits studied by circular dichroism, surface tension and dilatational elasticity. J Colloid Interface Sci 325:478–484. doi: 10.1016/j.jcis.2008.06.011

Rosales-Leal JI, Rodríguez-Valverde MA, Mazzaglia G et al (2010) Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf A Physicochem Eng Asp 365:222–229. doi: 10.1016/j.colsurfa.2009.12.017

Saji VS, Choe HC, Young KWK (2010) Nanotechnology in biomedical applications—a review. Int J Nano Biomater 3:119–139

Santos LER, Colhone MC, Daghastanli KRP et al (2009) Lipid microspheres loaded with antigenic membrane proteins of the leishmania amazonensis as a potential biotechnology application. J Colloid Interface Sci 340:112–118. doi: 10.1016/j.jcis.2009.08.025

Sato M, Slamovich EB, Webster TJ (2005) Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol–gel titanium coatings. Biomaterials 26:1349–1357. doi: 10.1016/j.biomaterials.2004.04.044

Schmidt RC, Healy KE (2009) Controlling biological interfaces on the nanometer length scale. Biomed Mater Res A 90:1252–1261. doi: 10.1002/jbm.a.32501

Sharma P, Mehra NK, Jain K, Jain N (2016) Biomedical applications of carbon nanotubes: a critical review. Curr Drug Deliv 13:796–817

Shehata T, Ogawara K, Higaki K, Kimura T (2008) Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int J Pharm 359:272–279. doi: 10.1016/j.ijpharm.2008.04.004

Simão AMS, Yadav MC, Ciancaglini P, Millán JL (2010a) Proteoliposomes as matrix vesicles’ biomimetics to study the initiation of skeletal mineralization. Braz J Med Biol Res 43:234–241. doi: 10.1590/S0100-879X2010007500008

Simão AMS, Yadav MC, Narisawa S et al (2010b) Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics. J Biol Chem 285:7598–7609. doi: 10.1074/jbc.M109.079830

Simão AMS, Bolean M, Cury TAC et al (2015) Liposomal systems as carriers for bioactive compounds. Biophys Rev 7:391–397. doi: 10.1007/s12551-015-0180-8

Surmenev RA (2011) A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Surf Coat Technol 206:2035–2056. doi: 10.1016/j.surfcoat.2011.11.002

Surmenev RA, Surmeneva MA, Ivanova AA (2014) Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis: a review. Acta Biomater 10:557–579. doi: 10.1016/j.actbio.2013.10.036

Tan AW, Pingguan-Murphy B, Ahmad R, Akbar SA (2012) Review of titania nanotubes: fabrication and cellular response. Ceram Int 38:4421–4435. doi: 10.1016/j.ceramint.2012.03.002

Tanahashi M, Matsuda T (1997) Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res 34:305–315. doi: 10.1002/(SICI)1097-4636(19970305)34:3<305::AID-JBM5>3.0.CO;2-O

Tas AC (2014) The use of physiological solutions or media in calcium phosphate synthesis and processing. Acta Biomater 10:1771–1792. doi: 10.1016/j.actbio.2013.12.047

Tian J, Wong KKY, Ho CM et al (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2:129–136. doi: 10.1002/cmdc.200600171

Tirrell M, Kokkoli E, Biesalski M (2002) The role of surface science in bioengineered materials. Surf Sci 500:61–83. doi: 10.1016/S0039-6028(01)01548-5

Tovani CB, Zancanela DC, Faria AN et al (2016) Bio-inspired synthesis of hybrid tube-like structures based on CaCO 3 and type I-collagen. RSC Adv 6:90509–90515. doi: 10.1039/C6RA18984A

Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21. doi: 10.1002/smll.200901158

Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci 74:69–117. doi: 10.1016/S0001-8686(97)00040-7

Walsh D, Furuzono T, Tanaka J (2001) Preparation of porous composite implant materials by in situ polymerization of porous apatite containing ɛ-caprolactone or methyl methacrylate. Biomaterials 22:1205–1212. doi: 10.1016/S0142-9612(00)00268-4

Wang HF, Huff TB, Zweifel DA et al (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 102:15752–15756. doi: 10.1073/pnas.0504892102

Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4939. doi: 10.1016/j.biomaterials.2003.12.002

Webster TJ, Ergun C, Doremus RH et al (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51:475–483

Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757. doi: 10.1016/j.biomaterials.2003.12.005

Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20[Suppl 4]:172–184. doi: 10.1111/j.1600-0501.2009.01775.x

Wennerberg A, Hallgren C, Johansson C, Danelli S (1998) A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res 9:11–19. doi: 10.1034/j.1600-0501.1998.090102.x

Williams KA, Veenhuizen PTM, de la Torre BG, Ramon Eritja CD (2002) Carbon nanotubes with DNA recognition. Nature 420:761

Xia Z, Yu X, Wei M (2012) Biomimetic collagen/apatite coating formation on Ti6Al4V substrates. J Biomed Mater Res B Appl Biomater 100:871–881. doi: 10.1002/jbm.b.31970

Xiao F-X, Pagliaro M, Xu Y-J, Liu B (2016) Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: a new perspective for rational construction of multilayer assemblies. Chem Soc Rev 45:3088–3121. doi: 10.1039/C5CS00781J

Xu Z, Liang G, Jin L et al (2014) Synthesis of sodium caseinate–calcium carbonate microspheres and their mineralization to bone-like apatite. J Cryst Growth 395:116–122. doi: 10.1016/j.jcrysgro.2014.03.023

Yang W, Thordarson P, Gooding JJ et al (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:1. doi: 10.1088/0957-4484/18/41/412001

Yang Y, Kim K, Ong J (2005) A review on calcium phosphate coatings produced using a sputtering process? An alternative to plasma spraying. Biomaterials 26:327–337. doi: 10.1016/j.biomaterials.2004.02.029

Yim EKF, Darling EM, Kulangara K et al (2010) Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31:1299–1306. doi: 10.1016/j.biomaterials.2009.10.037

Yoneda JS, Rigos CF, Ciancaglini P (2013) Addition of subunit l, K+ ions, and lipid restores the thermal stability of solubilized Na, K-ATPase. Arch Biochem Biophys 530:93–100. doi: 10.1016/j.abb.2009.01.015

Yoneda JS, Rigos CF, De Lourenço TFA et al (2014) Na, K-ATPase reconstituted in ternary liposome: The presence of cholesterol affects protein activity and thermal stability. Arch Biochem Biophys 564:136–141. doi: 10.1016/j.abb.2014.09.015

Yoon I-K, Hwang J-Y, Jang W-C et al (2014) Natural bone-like biomimetic surface modification of titanium. Appl Surf Sci 301:401–409. doi: 10.1016/j.apsusc.2014.02.090

Yukna RA, Yukna CN (1998) A 5-year follow-up of 16 patients treated with coralline calcium carbonate (Biocoraltm) bone replacement grafts in infrabony defects. J Clin Periodontol 25:1036–1040. doi: 10.1111/j.1600-051X.1998.tb02410.x

Zancanela DC, de Faria AN, Simão AMS et al (2016) Multi and single walled carbon nanotubes: effects on cell responses and biomineralization of osteoblasts culture. J Mater Sci Mater Med 27:1–10

Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6:562–7. doi: 10.1021/nl051861e

Zhang Y, Jin R, Zhang L, Liu M (2004) Growth of CaCO3 in the templated Langmuir?Blodgett film of a bolaamphiphilic diacid. New J Chem 28:614. doi: 10.1039/b314136e

Zhao HY, Xu XX, Zhang JX et al (2010) Carbon nanotube-hydroxyapatite-hemoglobin nanocomposites with high bioelectrocatalytic activity. Bioelectrochemistry 78:124–129. doi: 10.1016/j.bioelechem.2009.08.009

Zucolotto V, Daghastanli KRP, Hayasaka CO et al (2007) Using capacitance measurements as the detection method in antigen containing layer by layer films for biosensing. Anal Chem 79:2163–2167. doi: 10.1021/ac0616153