Biomechanical model to simulate tissue differentiation and bone regeneration: Application to fracture healing

Medical & Biological Engineering & Computing - Tập 40 Số 1 - Trang 14-21 - 2002
Damien Lacroix1, P. J. Prendergast1, Gang Li2, David Marsh2
1Department of Mechanical Engineering, Trinity College, Dublin, Ireland
2Department of Trauma & Orthopaedics, The Queen's University of Belfast, Musgrave Park Hospital, Belfast, Northern Ireland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blenman, P. R., Carter, D. R., andBeaupré, G. S. (1989): ‘Role of mechanical loading in the progressive ossification of a fracture callus’,J. Orthop. Res.,7, pp. 398–407

Carter, D. R., Blenman, P. R., andBeaupré, G. S. (1988): ‘Correlations between mechanical stress history and tissue differentiation in initial fracture healing’,J. Orthop. Res.,6, pp. 736–748

Claes, L. E., Heigele, C. A., Neidlinger-Wilke, C., Kaspar, D., Seidl, W., Margevivius, J., andAugat, P. (1998): ‘Effects of mechanical factors on the fracture healing process’,Clin. Orthop. Rel. Res.,355S, pp. 132–147

Claes, L. E., andHeigele, C. A. (1999): ‘Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing’,J. Biomech.,32, pp. 255–266

Cowin, S. C. (1999): ‘Bone poroelasticity’,J. Biomech.,32, pp. 217–238

Einhorn, T. A. (1998): ‘The cell and molecular biology of fracture healing’,Clin. Orthop. Rel. Res.,355S, pp. 7–21

Gardner, T. A., Stoll, T., Marks, L., andKnothe Tate, M. (2000): ‘The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracture-an FEM study’,J. Biomech.,33, pp. 415–425

Hori, R. Y., andLewis, J. L. (1982): ‘Mechanical properties of the fibrous tissue found at the bone-cement interface following total joint replacement’,J. Biomed. Mater. Res.,16, pp. 911–927

Huiskes, R., van Driel, W. D., Prendergast, P. J., andSøballe, K. (1997): ‘A biomechanical regulatory model of peri-prosthetic tissue differentiation’,J. Mater. Sci. Mater. Med.,8, pp. 785–788

Iwaki, A., Jingushi, S., Oda, Y., Izumi, T., Shida, J. I., Tsuneyoshi, M., andSugioka, Y. (1997): ‘Localization and quantification of proliferating cells during rat fracture repair: detection of proliferating cell nuclear antigen by immunohistochemistry’,J. Bone Min. Res.,12, pp. 96–102

Kuiper, J. H., Ashton, B. A., andRichardson, J. B. (2000): ‘Computer simulation of fracture callus formation and stiffness restoration’. Proceedings of 12th Conference of European Society of Biomechanics, p. 61, urwww.biomechanics.ie/esb2000

Lacroix, D., andPrendergast, P. J. 2000a: ‘A homogenization procedure to prevent numerical instabilities in poroelastic tissue differentiation models’. Proceedings of 8th Symposium on Computational Methods in Orthopaedic Biomechanics, urwww.me.gatech.edu/pre-ORS/

Lacroix, D., andPrendergast, P. J. 2000b: ‘A 3D finite element model of a tibia to simulate the regenerative and resportive phases during fracture healing’. Proceedings of 12th Conference of European Society of Biomechanics, p. 60, urwww.biomechanics.ie/esb2000.

McKibbin, B. (1978): ‘The biology of fracture healing in long bones’,J. Bone Joint Surg.,60B, 150–162

Mow, V. C., Kuei, S. C., Lai, W. M., andArmstrong, C. G. (1980): ‘Biphasic creep and stress relaxation of articular cartilage: theory and experiments’,J. Biomech. Eng.,102, pp. 73–84

Ochoa, J. A., andHillberry, B. M. (1992): ‘Permeability of bovine cancellous bone’. Transactions of 38th Meeting of Orthopaedic Research Society, p. 162

Olsen, L., Sherratt, J. A., andMaini, P. K. (1996): ‘A mathematical model for fibro-proliferative wound healing disorders’,Bull. Math. Biol.,58, pp. 787–808

Pauwels, F. (1941): ‘Grundrieß einer Biomechanik der Frakturheilung’. 34th Kongreß der Deutschen Orthopädischen Gesellschaft (Ferdinand Enke Verlag: Stuttgart, 1941), pp. 62–108. Translated as ‘Biomechanics of fracture healing’ in ‘Biomechanics of the locomotor apparatus’ byMaquet, P., andFurlong, R. (Springer, Berlin, 1980), pp. 107–137

Pauwels, F. (1960): ‘Eine Neue Theorie über den Einfluß Mechanischer Reize auf die Differenzierung der Stützgewebe’,Z. Anat. Entwickl. Gesch.,121, pp. 478–515. Translated as ‘A new theory concerning the influence of mechanical stimuli on the differentiation of the supporting tissues’ in ‘Biomechanics of the locomotor apparatus’ byMaquet, P., andFurlong, R. (Springer, Berlin, 1980), pp. 375–407

Perren, S. M. (1979): ‘Physical and biological aspects of fracture healing with special reference to internal fixation’,Clin. Orthop. Rel. Res.,138, p. 175

Prendergast, P. J., van Driel, W. D., andKuiper, J. H. (1996): ‘A comparison of finite element codes for the solution of biphasic poroelastic problems’,Proc. Inst. Mech. Eng. H,210, pp. 131–136

Prendergast, P. J., andvan der Meulen, M. C. H. (2001): ‘Mechanics of bone regeneration’ inCowin, S. C. (Ed.): Handbook of bone mechanics’ (CRC Press, Boca Raton, 2001), pp. 32.1–32.13

Prendergast, P. J. (1997): ‘Finite element models in tissue mechanics and orthopaedic implant design’,Clin. Biomech.,12, pp. 343–366

Prendergast, P. J., Huiskes, R., andSøballe, K. (1997): ‘Biophysical stimuli on cells during tissue differentiation at implant interfaces’,J. Biomech.,30, pp. 539–548

Rhinelander, F. W. (1974): ‘Tibial blood supply in relation to fracture healing’,Clin. Orthop. Rel. Res.,105, pp. 35–81

Sherratt, J. A., Martin, P., Murray, J. D., andLewis, J. (1992): ‘Mathematical models of would healing in embryonic and adult epidermis’,IMA J. Math. Appl. Med. Biol.,9, pp. 177–196

Tencer, A. F., andJohnson, J. (1994): Biomechanics in orthopaedic trauma’ (Martin Dinitz, London, 1994)

Yoo, J. U., andJohnstone, B. 1998. ‘The role of osteochondral progenitor cells in fracture repair’,Clin. Orthop. Rel. Res.,355, pp. 73–81

Zohar, R., Cheifetz, S., Mcculloch, C. A. G., andSodek, J. (1998): Analysis of intracellular osteopontin as a marker of osteoblastic cell differentiation and mesenchymal cell migration,Eur. J. Oral. Sci.,106, pp. 401–407