Biomass storage in low timber productivity Mediterranean forests managed after natural post-fire regeneration in south-eastern Spain

European Journal of Forest Research - Tập 133 - Trang 793-807 - 2014
Raquel Alfaro-Sánchez1, Francisco R. López-Serrano1, Eva Rubio2, Daniel Moya1, Raúl Sánchez-Salguero3,4, Jorge De Las Heras1
1Department of Plant Production and Agricultural Technology, ETSIA, University of Castilla-La Mancha, Albacete, Spain
2Department of Applied Physics, School of Industrial Engineering, University of Castilla-La Mancha, Albacete, Spain
3Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
4Dpto. Ingeniería Forestal, Laboratorio de Dendrocronología, Universidad de Cordoba, Córdoba, Spain

Tóm tắt

Despite the low timber productivity of Mediterranean Pinus halepensis Mill. forests in south-eastern Spain, they are a valuable carbon sequestration source which could be extended if young stands and understories were considered. We monitored changes in biomass storage of young Aleppo pine stands naturally regenerated after wildfires, with a diachronic approach from 5 to 16 years old, including pine and understory strata, at two different quality sites (dry and semiarid climates). At each site, we set 21 permanent plots and carried out different thinning intensities at two ages, 5 and 10 years after fires. We found similar post-fire regeneration capacity at both sites in terms of total above-ground biomass storage ~6 Mg ha−1 (3 Mg ha−1 of the above-ground pine biomass plus 3 Mg ha−1 of the above-ground understory biomass), but with a contrasting pine layer structure. Generally, across the diachronic study, the earlier thinning reduced biomass stocks at both sites, except for the best quality site (the dry site), where the earliest thinning (applied at post-fire year 5) enlarged carbon storage by 11 % as compared to non-thinned plots. We found root:shoot ratios of an average 0.37 for the pine layer and 0.45 for the understory layer. These results provided new information which not only furthers our understanding of carbon sequestration in low timber productivity Mediterranean forests, but will also help to develop new guidelines for sustainable management adapted to the high-risk terrestrial carbon losses of fire-prone areas.

Tài liệu tham khảo

Albaugh TJ, Allen HL, Kress LW (2006) Root and stem partitioning of Pinus taeda. Trees 20:176–185 Barton K (2013) MuMIn: multi-model inference. R package version 1.9.13. http://CRAN.R-project.org/package=MuMIn Bates DM, Maechler M, Bolker B (2014) lme4: linear mixed-effects models using S4 classes. R package version 1.0-6. http://CRAN.R-project.org/package=lme4 Beier C, Emmett BA, Tietema A, Schmidt IK, Peñuelas J, Lang EK, Duce P, De Angelis P, Gorissen A, Estiarte M, de Pato GD, Sowerby A, Kröel-Dulay G, Lellei-Kovacs E, Kull O, Mand P, Petersen H, Gjelstrup P, Spano D (2009) Carbon and nitrogen balances for six shrublands across Europe. Global Biogeochem Cycles 23:GB4008 Bravo F, Bravo-Oviedo A, Diaz-Balteiro L (2008) Carbon sequestration in Spanish Mediterranean forests under two management alternatives: a modelling approach. Eur J Forest Res 127:225–234 Bravo F, Álvarez-González JG, del Río M, Barrio-Anta M, Bonet JA, Bravo-Oviedo A, Calama R, Castedo-Dorado F, Crecente-Campo F, Condés S, Diéguez-Aranda U, González-Martínez SC, Lizarralde I, Nanos N, Madrigal A, Martínez-Millán FJ, Montero G, Ordóñez C, Palahí M, Piqué M, Rodríguez F, Rodríguez-Soalleiro R, Rojo A, Ruiz-Peinado R, Sánchez-González M, Trasobares A, Vázquez-Piqué J (2012) Growth and yield models in Spain: historical overview, contemporary examples and perspectives. http://www.usc.es/uxfs/Books Candfield RH (1941) Application of the line intercept method in sampling range vegetation. J Forest 39:388–394 Cañellas I, San Miguel A (2000) Biomass of root and shoot systems of Quercus coccifera shrublands in Eastern Spain. Ann Sci For 57:803–810 Capitaino R, Carcaillet C (2008) Post-fire Mediterranean vegetation dynamics and diversity: a discussion of succession models. Forest Ecol Manag 255:431–439 Castroviejo S (coord. gen.) (1986–2012) Flora Ibérica vol 1–8, 10–15, 17–18, 21. Real Jardín Botánico, CSIC, Madrid Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370 Conover WJ, Iman RL (1981) Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 35(3):124–129 De las Heras J, González-Ochoa A, López-Serrano F, Simarro ME (2004) Effects of silviculture treatments on vegetation after fire in Pinus halepensis Mill. woodlands (SE Spain). Ann For Sci 61:661–667 De las Heras J, Moya D, Vega JA, Daskalakou E, Vallejo R, Grigoriadis N, Tsitsoni T, Baeza J, Valdecantos A, Fernández C, Espelta J, Fernandes P (2012) Post-fire management of serotinous pine forests. In: Moreira F, Arianotsou M, Corona P, De las Heras J (eds) Post-Fire management and restoration of southern European forests. Manag Forest Ecosyst 24:151–170 De las Heras J, Moya D, López-Serrano FR, Rubio E (2013) Carbon sequestration and early thinning in Aleppo pine stands regenerated after fire in South-eastern Spain. New Forest 44:457–470 De Vries W, Reinds GJ, Posch M, Sanz MJ, Krause GHM, Calatayud V, Renaud JP, Dupouey JL, Sterba H, Vel EM, Dobbertin M, Gundersen P, Voogd JCH (2003) Intensive monitoring of forest ecosystems in Europe, 2003, technical report. European Commission, Brussels, and United Nations Economic Commission for Europe, Geneva Doblas-Miranda E (2013) Conservar Aprovechando. Cómo integrar el cambio global en la gestión de los montes españoles. Ministerio de Economía y Competividad, Madrid, pp 45–53 Erviti JJ (1991) Desarrollo de modelos de crecimiento y producción de las masas forestales de Pinus halepensis Mill. en España. Ph.D, thesis, ETSIM, Madrid Fady B, Semerci H, Vendramin GG (2003) EUFORGEN. Technical Guidelines for genetic conservation and use for Aleppo pine (Pinus halepensis) and Brutia pine (Pinus brutia). International Plant Genetic Resources Institute, Rome Finkral AJ, Evans AM (2008) Effects of a thinning treatment on carbon stocks in a northern Arizona ponderosa pine forest. Forest Ecol Manag 255:2743–2750 Flannigan MD, Amiro BD, Logan KA, Stocks BJ, Wotton BM (2005) Forest fires and climate change in the 21st century. Mitig Adapt Strat Glob Chang 11(4):847–859 Franz F, Forster H (1979) Table de production de pin d’Alep pour les Aurès-algerie. Forschungsvorhaben im Auftrag des Bundesministeriums für wirtschaftlinche Zusammenarbeit, Bonn, p 112 González-Ochoa AI (2003) Manejo de regenerados naturales post-incendio y regeneración artificial de Pinus halepensis con planta micorrizada en el SE de España. Ph.D. thesis, UCLM, Albacete González-Ochoa AI, López-Serrano FR, De las Heras J (2004) Does post-fire forest management increase tree growth and cone production in Pinus halepensis? Forest Ecol Manag 188:235–247 Grünzweig JM, Gelfand I, Fried Y, Yakir D (2007) Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland. Biogeosciences 4:891–904 Jiménez E, Vega JA, Fernandez C, Fonturbel T (2011) Is pre-commercial thinning compatible with carbon sequestration? A case study in a maritime pine stand in northwestern Spain. Forestry 84:149–157 Kaye JP, Romanyà J, Vallejo VR (2010) Plant and soil carbon accumulation following fire in Mediterranean woodlands in Spain. Oecologia 164:533–543 Kazanis D, Arianoutsou M (2004) Long-term post-fire vegetation dynamics in Pinus halepensis forests of Central Greece: a functional group approach. Plant Ecol 171:101–121 Kazanis D, Xanthopoulos G, Arianoutsou M (2012) Understory fuel load estimation along two post-fire chronosequences of Pinus halepensis Mill. forests in Central Greece. J Forest Res 17:105–109 Lloret F, Vilá M (2003) Diversity patterns of plant functional types in relation to fire regime and previous land use in Mediterranean woodlands. J Veg Sci 14:387–398 Lloret F, Estevan H, Vayreda J, Terradas J (2005) Fire regenerative syndromes of forest woody species across fire and climatic gradients. Oecologia 146:461–468 López-Serrano FR, García-Morote A, Andres-Abellan M, Tendero A, del Cerro A (2005) Site and weather effects in allometries: a simple approach to climate change effect on pines. Forest Ecol Manag 215:251–270 López-Serrano FR, De las Heras J, González-Ochoa AI, García-Morote FA, Landete T, Andrés M, Moya D, Del Cerro A (2006) Quercus ilex L. and Pinus halepensis Mill. post-fire forest stands improve growth after thinning treatments as a consequence of a better availability of N. In: Burke AR (ed) New developments in ecology research. Nova Science Publisher, Inc., New York, pp 99–139 López-Serrano FR, De las Heras J, Moya D, García-Morote FA, Rubio E (2010) Is the net new carbon increment of coppice forest stands of Quercus ilex ssp. ballota affected by post-fire thinning treatments and recurrent fires? Int J Wildland Fire 19:637–648 Madrigal J, Hernando C, Guijarro M, Díez C, Jiménez E (2006) Distribución de biomasa y fijación de carbono tras clareos mecanizados intensos en regenerado post-incendio de Pinus pinaster Ait. (Monte “Fraguas”, Guadalajara, España). Invest Agrar Sist Recur For 15:231–242 Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151 Montero G, Cañellas I, Ruiz-Peinado R (2001) Growth and yield models for Pinus halepensis Mill. Forest Syst 20(1):179–201 Montero G, Ruiz-Peinado R, Muñoz M (2005) Producción de biomasa y fijación de CO2 por los bosques españoles. Monografías INIA: Serie Forestal, vol 13, Madrid Montès N, Ballini C, Bonin G, Faures J (2004) A comparative study of aboveground biomass of three Mediterranean species in a post-fire succession. Acta Oecol 25:1–6 Moreira F, Arianoutsou M, De las Heras J, Corona P, Xanthopoulos G, Fernandes P, Papageorgiou K (2012) Setting the scene for post-fire management. In: Moreira F, Arianoutsou M, Corona P, De las Heras J (eds.) Post-fire management and restoration of Southern European forests. Ser Manag Forest Ecosyst 24:1–20 Moya D, De las Heras J, López-Serrano FR, Leone V (2008) Optimal intensity and age of management in young Aleppo pine stands for post-fire resilience. Forest Ecol Manag 255(8–9):3270–3280 Navarro FB, Jiménez MN, Cañadas E, Gallego E, Terrón L, Ripoll MA (2010) Effects of different intensities of overstory thinning on tree growth and understory plant-species productivity in a semi-arid Pinus halepensis Mill. afforestation. Forest Syst 19(3):410–417 Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models, 4th edn. Irwin, Chicago Pardé J, Bouchon J (1994) Dasometría. Spanish ed. of Dendrométrie. Trans. Prieto-Rodríguez, A and López-Quero, M. Ecole Nationale des Eaux et Forêts (ENGREF). Nancy (Francia). Edit. Paraninfo, Madrid Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Sci 45:573–593 Pausas JG, Ribeiro E, Vallejo R (2004) Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula. Forest Ecol Manag 203:251–259 Peichl M, Arain MA (2006) Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric Forest Meteorol 140:51–63 Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (2003) Good practice guidance for land use, land-use change, and forestry. Institute for Global Environmental Strategies, Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme, Kanagawa R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/ Rivas Martínez S (1987) Memoria del mapa de series de vegetación de España. ICONA, Madrid Ruíz-Peinado R, del Rio M, Montero G (2011) New models for estimating the carbon sink capacity of Spanish softwood species. Forest Syst 20(1):176–188 Ruíz-Peinado R, Moreno G, Juarez E, Montero G, Roig S (2013) The contribution of two common shrub species to aboveground and belowground carbon stock in Iberian dehesas. J Arid Environ 91:22–30 Sánchez G (1995) Arquitectura y dinámica de las matas de esparto (Stipa tenacissima L.), efectos en el medio e interacciones con la erosión. Ph.D, thesis. Universidad Autónoma de Madrid Skovsgaard JP, Stupak I, Vesterdal L (2006) Distribution of biomass and carbon in even-aged stands of Norway spruce (Picea abies (L.) Karst.): a case study on spacing and thinning effects in northern Denmark. Scand J Forest Res 21:470–488 Trabaud L, Michels C, Grosman J (1985) Recovery of burnt Pinus halepensis Mill. Forests, II. Pine reconstitution after wildfire. Forest Ecol Manag 13:167–179 Trabaud L (1994) Postfire plant community dynamics in the Mediterranean basin. In: Moreno JM, Oechel WC (eds) The role of fire in mediterranean—type ecosystems. Ecological studies, vol 107. Springer, New York Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM (1964–1996) Flora Europaea. Cambridge University Press, Cambridge Verkaik I, Espelta JM (2006) Post-fire regeneration thinning, cone production, serotiny and regeneration age in Pinus halepensis. For Ecol Manag 231:155–163 Wiedinmyer C, Neff JC (2007) Estimates of CO2 from fires in the United States: implications for carbon management. Carbon Balance Manag 1:2–10 Xiao CW, Ceulemans R (2004) Allometric relationships for below- and aboveground biomass of young Scots pines. For Ecol Manag 203:177–186 Zianis D, Xanthopoulos G, Kalabokidis K, Kazakis G, Ghosn D, Roussou O (2011) Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. trees growing in North and South Aegean Islands, Greece. Eur J Forest Res 130(2):145–160