Biomass derived anode for high-electrochemical performance potassium-ion capacitors
Tài liệu tham khảo
Luo, 2017, Surface and interface engineering of silicon-based anode materials for lithium-ion batteries, Adv. Energy Mater., 7, 1701083, 10.1002/aenm.201701083
Barcellona, 2017, Lithium ion battery models and parameter identification techniques, Energies, 10, 10.3390/en10122007
Agubra, 2014, The formation and stability of the solid electrolyte interface on the graphite anode, J. Power Sources, 268, 153, 10.1016/j.jpowsour.2014.06.024
Ma, 2020, Cooling optimization strategy for lithium-ion batteries based on triple-step nonlinear method, Energy, 201, 117678, 10.1016/j.energy.2020.117678
Ding, 2015, Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors, Energy Environ. Sci., 8, 941, 10.1039/C4EE02986K
Tai, 2017, Activated carbon from the graphite with increased rate capability for the potassium ion battery, Carbon, 123, 54, 10.1016/j.carbon.2017.07.041
Komaba, 2015, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors, Electrochem. Commun., 60, 172, 10.1016/j.elecom.2015.09.002
Zhang, 2020, Sodium-ion capacitors with superior energy-power performance by using carbon-based materials in both electrodes, Progr. Nat. Sci. Mater. Int., 30, 13, 10.1016/j.pnsc.2020.01.009
Yuan, 2018, Sodium-ion hybrid capacitor of high power and energy density, ACS Cent. Sci., 4, 1261, 10.1021/acscentsci.8b00437
Jia, 2020, Recent progress and future prospects of sodium-ion capacitors, Sci. China Mater., 63, 185, 10.1007/s40843-019-1188-x
Li, 2018, A nonpresodiate sodium‐ion capacitor with high performance, Small, 14, 1804035, 10.1002/smll.201804035
Lang, 2020, Flexible potassium-ion hybrid capacitor with superior rate performance and long cycling life, ACS Appl. Mater. Interfaces, 12, 2424, 10.1021/acsami.9b17635
Liu, 2019, Layered potassium-deficient P2- and P3-type cathode materials KxMnO2 for K-ion batteries, Chem. Eng. J., 356, 53, 10.1016/j.cej.2018.09.012
Ramasamy, 2019, Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode, Chem. Eng. J., 368, 235, 10.1016/j.cej.2019.02.172
Hu, 2020, Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor, Energy Environ. Sci., 13, 2431, 10.1039/D0EE00477D
Ding, 2019, Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes, Adv. Mater., 31, e1900429, 10.1002/adma.201900429
Xu, 2019, Direct structure–performance comparison of all‐carbon potassium and sodium ion capacitors, Adv. Sci., 6, 1802272, 10.1002/advs.201802272
Feng, 2020, Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor, J. Energy Chem., 43, 129, 10.1016/j.jechem.2019.08.013
Luan, 2019, Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors, Nano-Micro Lett., 11, 10.1007/s40820-019-0260-6
Cen, 2019, Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor, J. Mater. Chem. A, 7, 9247, 10.1039/C9TA01653H
Qiu, 2019, Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors, Adv. Funct. Mater., 6, 1903496, 10.1002/adfm.201903496
Ge, 2020, Hierarchically structured nitrogen-doped carbon microspheres for advanced potassium ion batteries, ACS Mater. Lett., 2, 853, 10.1021/acsmaterialslett.0c00171
Ge, 2020, Nature of FeSe2 /N-C anode for high performance potassium ion hybrid capacitor, Adv. Energy Mater., 10, 1903277, 10.1002/aenm.201903277
Kado, 2019, Advanced carbon electrode for electrochemical capacitors, J. Solid State Electrochem., 23, 1061, 10.1007/s10008-019-04211-x
Li, 2018, A dyeing-induced heteroatom-co-doped route toward flexible carbon electrode derived from silk fabric, J. Mater. Sci., 53, 7735, 10.1007/s10853-018-2100-3
Pei, 2017, Texturing in situ: N, S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst, Energy Environ. Sci., 10, 742, 10.1039/C6EE03265F
Pandey, 2018, Electrochemically grown polymethylene blue nanofilm on copper-carbon nanofiber nanocomposite: an electrochemical sensor for creatinine, Sens. Actuat. B, 277, 562, 10.1016/j.snb.2018.09.036
Hu, 2020, Energy Environ. Sci., 13, 2431, 10.1039/D0EE00477D