Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides

Biomass Conversion and Biorefinery - Tập 7 Số 3 - Trang 289-304 - 2017
Héctor Hernando1, Inés Moreno2,1, Javier Fermoso1, Cristina Ochoa‐Hernández3, Patricia Pizarro2,1, Juan M. Coronado1, Jiřı́ Čejka3, David Serrano2,1
1Thermochemical Processes Unit, IMDEA Energy Institute, Mostoles, Spain
2Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, Mostoles, Spain
3J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic

Tóm tắt

Từ khóa


Tài liệu tham khảo

Carpenter D, Westover TL, Czernik S, Jablonski W (2014) Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem 16:384–406. doi:10.1039/c3gc41631c

Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513. doi:10.1039/c004654j

Iliopoulou EF, Stefanidis SD, Kalogiannis KG, Delimitis A, Lappas AA, Triantafyllidis KS (2012) Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl Catal B Environ 127:281–290. doi:10.1016/j.apcatb.2012.08.030

Dickerson T, Soria J (2013) Catalytic fast pyrolysis: a review. Energies 6:514–538. doi:10.3390/en6010514

Mihalcik DJ, Mullen CA, Boateng A (2011) Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J Anal Appl Pyrolysis 92:224–232. doi:10.1016/j.jaap.2011.06.001

Imran A, Bramer EA, Seshan K, Brem G (2014) High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate. Fuel Process Technol 127:72–79. doi:10.1016/j.fuproc.2014.06.011

Zhang H, Xiao R, Jin B, Xiao G, Chen R (2013) Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour Technol 140:256–262. doi:10.1016/j.biortech.2013.04.094

Asadieraghi M, Daud WMAW (2015) In-situ catalytic upgrading of biomass pyrolysis vapor: using a cascade system of various catalysts in a multi-zone fixed bed reactor. Energy Convers Manag 101:151–163. doi:10.1016/j.enconman.2015.05.008

Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY (2008) Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel 87:2493–2501. doi:10.1016/j.fuel.2008.02.015

Tan S, Zhang Z, Sun J, Wang Q (2013) Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chinese J Catal 34:641–650. doi:10.1016/S1872-2067(12)60531-2

Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623. doi:10.1039/c3cs60414d

Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S, Wang Y (2014) Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal A Gen 470:115–122. doi:10.1016/j.apcata.2013.10.040

Naqvi SR, Uemura Y, Yusup S, Sugiura Y, Nishiyama N (2015) In situ catalytic fast pyrolysis of paddy husk pyrolysis vapors over MCM-22 and ITQ-2 zeolites. J Anal Appl Pyrolysis 114:32–39. doi:10.1016/j.jaap.2015.04.003

Foster AJ, Jae J, Cheng YT, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal A Gen 423–424:154–161. doi:10.1016/j.apcata.2012.02.030

Park HJ, Heo HS, Jeon JK, Kim J, Ryoo R, Jeong KE, Park YK (2010) Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites. Appl Catal B Environ 95:365–373. doi:10.1016/j.apcatb.2010.01.015

Park HJ, Park KH, Jeon JK, Kim J, Ryoo R, Jeong KE, Park SH, Park YK (2012) Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel 97:379–384. doi:10.1016/j.fuel.2012.01.075

Lin Y, Zhang C, Zhang M, Zhang J (2010) Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor. Energy and Fuels 24:5686–5695. doi:10.1021/ef1009605

Putun E (2010) Catalytic pyrolysis of biomass: effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy 35:2761–2766. doi:10.1016/j.energy.2010.02.024

Zhou L, Yang H, Wu H, Wang M, Cheng D (2013) Catalytic pyrolysis of rice husk by mixing with zinc oxide: characterization of bio-oil and its rheological behavior. Fuel Process Technol 106:385–391. doi:10.1016/ j.fuproc.2012.09.003

Fanchiang WL, Lin YC (2002) Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts. Appl Catal A Gen 419–420:102–110. doi:10.1016/j.apcata.2012.01.017

Channiwala SA, Parikh, PP (2002) A Unified Correlation for Estimating HHV of Solid, Liquid and Gaseous Fuels. Fuel, 2002, 81, 1051-1063. doi: 10.1016/S0016-2361(01)00131-4

Serrano DP, Aguado J, Escola JM, Rodríguez JM, Peral Á (2006) Hierarchical Zeolites with Enhanced Textural and Catalytic Properties Synthesized from Organofunctionalized Seeds. Chem. Mater. 18:2462–2464. doi: 10.1021/cm060080r

Aguado J, Serrano DP, Rodríguez JM (2008) Zeolite Beta with hierarchical porosity prepared from organofunctionalized seeds. Microporous Mesoporous Mater 115:504–513. doi: 10.1016/j.micromeso.2008.02.026

Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354. doi: 10.1006/jcat.1993.1145

Serrano DP, García RA, Vicente G, Linares M, Procházková D, Čejka J (2011) Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. J Catal 279:366–380. doi: 10.1016/j.jcat.2011.02.007

Fermoso J, Hernando H, Jana P, Moreno I, Přech J, Ochoa-Hernández C, Pizarro P, Coronado JM, Čejka J, Serrano DP (2016) Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catal Today 15:171–181. doi: 10.1016/j.cattod.2015.12.009

Lermer H, Draeger M, Steffen J, Unger KK (1985) Synthesis and structure refinement of ZSM-5 single crystals. Zeolites 5:131–134. doi:10.1016/0144-2449(85)90019-3

Omegna A, Vasic M, Van Bokhoven JA, Pirngruber G, Prins R (2004) Dealumination and realumination of microcrystalline zeolite Beta: an XRD, FTIR and quantitative multinuclear (MQ) MAS NMR study. Phys Chem Chem Phys 6:447–452. doi:10.1039/b311925d

García-Muñoz RA, Serrano DP, Vicente G, Linares M, Vitvarova D, Čejka J (2015) Remarkable catalytic properties of hierarchical zeolite-beta in epoxide rearrangement reactions. Catal Today 243:141–152. doi:10.1016/j.cattod.2014.09.014

Poupin C, Maache R, Pirault-Roy L, Brahmi R, Williams CT (2014) Effect of Al2O3/MgO molar ratio on catalytic performance of Pt/MgO-Al2O3 catalyst in acetonitrile hydrogenation followed by Fourier transform infrared spectroscopy. Appl Catal A Gen 475:363–370. doi:10.1016/j.apcata.2014.01.041

Travert A, Vimont A, Sahibed-Dine A, Daturi M, Lavalley JC (2006) Use of pyridine CH(D) vibrations for the study of Lewis acidity of metal oxides. Appl Catal A Gen 307:98–107. doi:10.1016/j.apcata.2006.03.011

Barbosa LAMM, Van Santen RA (1999) Theoretical study of the enhanced Brønsted acidity of Zn2+-exchanged zeolites. Catal Letters 63:97–106. doi:10.1023/A:1019004702119

Escola JM, Aguado J, Serrano DP, Briones L, Díaz de Tuesta JL, Calvo R, Fernandez E (2012) Conversion of polyethylene into transportation fuels by the combination of thermal cracking and catalytic hydroreforming over Ni-supported hierarchical beta zeolite. Energy Fuel 26:3187–3195. doi:10.1021/ef300938r

Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279:257–268. doi:10.1016/j.jcat.2011.01.019

Cheng S, Wei L, Zhao X, Julson J (2016) Application, deactivation, and regeneration of heterogeneous catalysts in bio-oil upgrading. Catalysts 195:6–24. doi:10.3390/catal6120195

Xie J, Zhuang W, Zhang W, Yan N, Zhou Y, Wang J (2017) Construction of acid–base synergetic sites on mg-bearing BEA zeolites triggers the unexpected low-temperature alkylation of phenol. Chem Cat Chem 9(6):1076–1083. doi:10.1002/cctc.201601127

Stefanidis SD, Karakoulia SA, Kalogiannis KG, Iliopoulou EF, Delimitis A, Yiannoulakisc H, Zampetakisc T, Lappas AA, Triantafyllidis KS (2016) Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Appl Catal B Environ 196:155–173. doi:10.1016/j.apcatb.2016.05.031

Nguyen TS, Zabeti M, Lefferts L, Brem G, Seshan K (2013) Catalytic upgrading of biomass pyrolysis vapours using faujasite zeolite catalysts. Biomass Bioenergy 48:100–110. doi:10.1016/j.biombioe.2012.10.024

Hernando H, Jiménez-Sánchez S, Fermoso J, Pizarro P, Coronado JM, Serrano DP (2016) Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways and energy yields for the efficient production of advanced biofuels. Catal Sci Technol 6:2829–2843. doi:10.1039/C6CY00522E