Biomarkers in amyotrophic lateral sclerosis: opportunities and limitations

Nature Reviews Neurology - Tập 7 Số 11 - Trang 631-638 - 2011
Robert Bowser1, Martin R. Turner2, Jeremy M. Shefner3
1Division of Neurology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, 350 West Thomas Street, Phoenix, AZ 85213, USA.
2Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, Headley Way, UK
3Department of Neurology, State University of New York Upstate Medical University, Syracuse, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Charcot, J. M. De la sclerose laterale amytrophique [French]. Prog. Med. 2, 325–327, 341–342, 453–455 (1874).

Chou, S. M. Pathology-light microscopy of amyotrophic lateral sclerosis in Handbook of Amyotrophic Lateral Sclerosis (ed. Smith, R. A) 133–192 (Marcal Dekker Inc., New York, 1992).

Bruijn, L. I. & Cleveland, D. W. Mechanisms of selective motor neuron death in ALS: insights from transgenic mouse models of motor neuron disease. Neuropathol. Appl. Neurobiol. 22, 373–387 (1996).

Cleveland, D. W. & Rothstein, J. From Charcot to Lou Gehrig: Deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806–819 (2001).

Wood, J. D., Beaujeux, T. P. & Shaw, P. J. Protein aggregation in motor neurone disorders. Neuropathol. Appl. Neurobiol. 29, 529–545 (2003).

Valdmanis, P. N., Daoud, H., Dion, P. A. & Rouleau, G. A. Recent advances in the genetics of amyotrophic lateral sclerosis. Curr. Neurol. Neurosci. Rep. 9, 198–205 (2009).

Kim, W. K. et al. Study of 962 patients indicates progressive muscular atrophy is a form of ALS. Neurology 73, 1686–1692 (2009).

Traynor, B. J. et al. Amyotrophic lateral sclerosis mimic syndromes: a population-based study. Arch. Neurol. 57, 109–113 (2000).

Mitchell, J. D. et al. Timelines in the diagnostic evaluation of people with suspected amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND)—a 20-year review: Can we do better? Amyotroph. Lateral Scler. 11, 537–541 (2010).

Norris, F. et al. Onset, natural history and outcome in idiopathic adult motor neuron disease. J. Neurol. Sci. 118, 48–55 (1993).

Turner, M. R., Parton, M. J., Shaw, C. E., Leigh, P. N. & Al-Chalabi, A. Prolonged survival in motor neuron disease: a descriptive study of the King's database 1990–2002. J. Neurol. Neurosurg. Psychiatry 74, 995–997 (2003).

Brooks, B. R., Miller, R. G., Swash, M. & Munsat, T. L. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 1, 293–299 (2000).

Ryberg, H. & Bowser, R. Protein biomarkers for amyotrophic lateral sclerosis. Expert Rev. Proteomics 5, 249–262 (2008).

Turner, M. R., Kiernan, M. C., Leigh, P. N. & Talbot, K. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol. 8, 94–109 (2009).

Sussmuth, S. D., Brettschneider, J., Ludolph, A. C. & Tumani, H. Biochemical markers in CSF of ALS patients. Curr. Med. Chem. 15, 1788–1801 (2008).

van Weemen, B. K. & Schuurs, A. H. Immunoassay using antigen–enzyme conjugates. FEBS Lett. 15, 232–236 (1971).

Brettschneider, J., Petzold, A., Submuth, S. D., Ludolph, A. C. & Tumani, H. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66, 852–856 (2006).

Boylan, K. et al. Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS biomarker. J. Neurochem. 111, 1182–1191 (2009).

Reijn, T. S., Abdo, W. F., Schelhaas, H. J. & Verbeek, M. M. CSF neurofilament protein analysis in the differential diagnosis of ALS. J. Neurol. 256, 615–619 (2009).

Kuhle, J. et al. A highly sensitive electrochemiluminescence immunoassay for the neurofilament heavy chain protein. J. Neuroimmunol. 220, 114–119 (2010).

Mitchell, R. M. et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 72, 14–19 (2009).

Kuhle, J. et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur. J. Neurol. 16, 771–774 (2009).

Sussmuth, S. D. et al. CSF glial markers correlate with survival in amyotrophic lateral sclerosis. Neurology 74, 982–987 (2010).

Ganesalingam, J. et al. Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J. Neurochem. 117, 528–537 (2011).

Ranganathan, S. et al. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J. Neurochem. 95, 1461–1471 (2005).

Pasinetti, G. M. et al. Identification of potential CSF biomarkers in ALS. Neurology 66, 1218–1222 (2006).

Ryberg, H. et al. Discovery and verification of amyotrophic lateral sclerosis biomarkers by mass spectrometry based proteomics. Muscle Nerve 42, 104–111 (2010).

Goldknopf, I. L. et al. Complement C3c and related protein biomarkers in amyotrophic lateral sclerosis and Parkinson's disease. Biochem. Biophys. Res. Commun. 342, 1034–1039 (2006).

Brettschneider, J. et al. Proteome analysis reveals candidate markers of disease progression in amyotrophic lateral sclerosis (ALS). Neurosci. Lett. 468, 23–27 (2010).

Brettschneider, J. et al. Proteome analysis of cerebrospinal fluid in amyotrophic lateral sclerosis (ALS). Neurochem. Res. 33, 2358–2363 (2008).

Schlautman, J. D. et al. Multidimensional protein fractionation using ProteomeLab PF 2D for profiling amyotrophic lateral sclerosis immunity: a preliminary report. Proteome Sci. 6, 26 (2008).

Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. & Kuster, B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007).

Wilson, M. E., Boumaza, I., Lacomis, D. & Bowser, R. Cystatin c: a candidate biomarker for amyotrophic lateral sclerosis. PLoS ONE 5, e15133 (2010).

Sherman, A. et al. Proposed BioRepository platform solution for the ALS research community. Amyotroph. Lateral Scler. 12, 11–16 (2011).

Bowser, R. & Lacomis, D. Applying proteomics to the diagnosis and treatment of ALS and related diseases. Muscle Nerve 40, 753–762 (2009).

Carvalho, M. D. & Swash, M. Awaji diagnostic algorithm increases sensitivity of El Escorial criteria for ALS diagnosis. Amyotroph. Lateral Scler. 10, 53–57 (2009).

Erminio, F., Buchthal, F. & Rosenfalk, P. Motor unit territory and muscle fiber concentration in paresis due to peripheral nerve injury and anterior horn involvement. Neurology 9, 657–671 (1959).

Douglass, C. P., Kandler, R. H., Shaw, P. J. & McDermott, C. J. An evaluation of neurophysiological criteria used in the diagnosis of motor neuron disease. J. Neurol. Neurosurg. Psychiatry 81, 646–649 (2010).

Aggarwal, A. & Nicholson, G. Normal complement of motor units in asymptomatic familial (SOD1 mutation) amyotrophic lateral sclerosis carriers. J. Neurol. Neurosurg. Psychiatry. 71, 478–481 (2001).

Hansen, S. & Ballantyne, J. P. A quantitative electrophysiological study of motor neurone disease. J. Neurol. Neurosurg. Psychiatry 41, 773–783 (1978).

Carleton, S. A. & Brown, W. F. Changes in motor unit populations in motor neurone disease. J. Neurol. Neurosurg. Psychiatry 42, 42–51 (1979).

Andres, P. et al. Quantitative motor assessment in amyotrophic lateral sclerosis. Neurology 36, 937–941 (1986).

Andres, P. L., Finison, L. J., Conlon, T., Thibodeau, L. M. & Munsat, T. L. Use of composite scores (megascores) to measure deficit in amyotrophic lateral sclerosis. Neurology 38, 405–408 (1988).

Mitsumoto, H. et al. Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology 68, 1402–1410 (2007).

Felice, K. J. A longitudinal study comparing thenar motor unit number estimates to other quantitative tests in patients with amyotrophic lateral sclerosis. Muscle Nerve 20, 179–185 (1997).

Liu, X. X. et al. Stratifying disease stages with different progression rates determined by electrophysiological tests in patients with amyotrophic lateral sclerosis. Muscle Nerve 39, 304–309 (2009).

Ahn, S. W. et al. Motor unit number estimation in evaluating disease progression in patients with amyotrophic lateral sclerosis. J. Korean Med. Sci. 25, 1359–1363 (2010).

Olney, R., Yuen, E. & Engstrom, J. The rate of change in motor unit number estimates predicts survival in patients with amyotrophic lateral sclerosis. Neurology 52 (Suppl. 2), A3 (1999).

Armon, C. & Brandstater, M. E. Motor unit number estimate-based rates of progression of ALS predict patient survival. Muscle Nerve 22, 1571–1575 (1999).

Shefner, J. M., Cudkowicz, M. E., Zhang, H., Schoenfeld, D. & Jillapalli, D. The use of statistical MUNE in a multicenter clinical trial. Muscle Nerve 30, 463–469 (2004).

Shefner, J. M., Cudkowicz, M. E., Zhang, H., Schoenfeld, D. & Jillapalli, D. Revised statistical motor unit number estimation in the Celecoxib/ALS trial. Muscle Nerve 35, 228–234 (2006).

Shefner, J. M. et al. Multipoint Incremental motor unit number estimation as an outcome measure in ALS. Neurology 77, 235–241 (2011).

Rutkove, S. B., Aaron, R. & Shiffman, C. A. Localized bioimpedance analysis in the evaluation of neuromuscular disease. Muscle Nerve 25, 390–397 (2002).

Rutkove, S. B. et al. Electrical impedance myography to assess outcome in amyotrophic lateral sclerosis clinical trials. Clin. Neurophysiol. 118, 2413–2418 (2007).

Rutkove, S. Electrical impedance myography as a biomarker for ALS. Lancet Neurol. 8, 226 (2009).

de Carvalho, M. & Swash, M. Sensitivity of electrophysiological tests for upper and lower motor neuron dysfunction in ALS: a six-month longitudinal study. Muscle Nerve 41, 208–211 (2010).

Kanai, K. et al. Altered axonal excitability properties in amyotrophic lateral sclerosis: impaired potassium channel function related to disease stage. Brain 129, 953–962 (2006).

Nakata, M. et al. Distal excitability changes in motor axons in amyotrophic lateral sclerosis. Clin. Neurophysiol. 117, 1444–1448 (2006).

Vucic, S. & Kiernan, M. C. Upregulation of persistent sodium conductances in familial ALS. J. Neurol. Neurosurg. Psychiatry 81, 222–227 (2010).

Urban, P. P., Vogt, T. & Hopf, H. C. Corticobulbar tract involvement in amyotrophic lateral sclerosis. A transcranial magnetic stimulation study. Brain 121, 1099–1108 (1998).

de Carvalho, M., Turkman, A. & Swash, M. Motor responses evoked by transcranial magnetic stimulation and peripheral nerve stimulation in the ulnar innervation in amyotrophic lateral sclerosis: the effect of upper and lower motor neuron lesion. J. Neurol. Sci. 210, 83–90 (2003).

Vucic, S., Cheah, B. C., Yiannikas, C. & Kiernan, M. C. Cortical excitability distinguishes ALS from mimic disorders. Clin. Neurophysiol. 122, 1860–1866 (2011).

Vucic, S. & Kiernan, M. C. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain 129, 2436–2446 (2006).

Vucic, S., Nicholson, G. A. & Kiernan, M. C. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 131, 1540–1550 (2008).

de Carvalho, M. & Swash, M. Sensitivity of electrophysiological tests for upper and lower motor neuron dysfunction in ALS: a six-month longitudinal study. Muscle Nerve 41, 208–211 (2010).

Urban, P. P., Vogt, T. & Hopf, H. C. Corticobulbar tract involvement in amyotrophic lateral sclerosis. A transcranial magnetic stimulation study. Brain 121, 1099–1108 (1998).

Filippi, M. et al. EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases. Eur. J. Neurol. 17, 526-e20 (2010).

Turner, M. R. & Modo, M. Advances in the application of MRI to amyotrophic lateral sclerosis. Expert Opin. Med. Diagn. 4, 483–496 (2010).

Ince, P. G. et al. Corticospinal tract degeneration in the progressive muscular atrophy variant of ALS. Neurology 60, 1252–1258 (2003).

Ravits, J. M. & La Spada, A. R. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73, 805–811 (2009).

Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

Chang, J. L. et al. A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD. Neurology 65, 75–80 (2005).

Abrahams, S. et al. Frontotemporal white matter changes in amyotrophic lateral sclerosis. J. Neurol. 252, 321–331 (2005).

Chen, Z. & Ma, L. Grey matter volume changes over the whole brain in amyotrophic lateral sclerosis: A voxel-wise meta-analysis of voxel based morphometry studies. Amyotroph. Lateral Scler. 11, 549–554 (2010).

Smith, M. C. Nerve fibre degeneration in the brain in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 23, 269–282 (1960).

Ciccarelli, O., Catani, M., Johansen-Berg, H., Clark, C. & Thompson, A. Diffusion-based tractography in neurological disorders: concepts, applications and future developments. Lancet Neurol. 7, 715–727 (2008).

Ellis, C. M. et al. Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53, 1051–1058 (1999).

Filippini, N. et al. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 75, 1645–1652 (2010).

van der Graaf, M. M. et al. Upper and extra-motoneuron involvement in early motoneuron disease: a diffusion tensor imaging study. Brain 134, 1211–1228 (2011).

Agosta, F. et al. A longitudinal diffusion tensor MRI study of the cervical cord and brain in ALS patients. J. Neurol. Neurosurg. Psychiatry 80, 53–55 (2008).

Kew, J. J. et al. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain 116, 655–680 (1993).

Lule, D., Ludolph, A. C. & Kassubek, J. MRI-based functional neuroimaging in ALS: an update. Amyotroph. Lateral Scler. 10, 258–268 (2009).

Mohammadi, B. et al. Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp. Neurol. 217, 147–153 (2009).

Jelsone-Swain, L. M. et al. Reduced interhemispheric functional connectivity in the motor cortex during rest in limb-onset amyotrophic lateral sclerosis. Front. Syst. Neurosci. 4, 158 (2010).

Pohl, C. et al. Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis. Arch. Neurol. 58, 729–735 (2001).

Turner, M. R. et al. Distinct cerebral lesions in sporadic and 'D90A' SOD1 ALS: studies with [11C]flumazenil PET. Brain 128, 1323–1329 (2005).

Turner, M. R. et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R.)-PK11195 positron emission tomography study. Neurobiol. Dis. 15, 601–609 (2004).

Philips, T. & Robberecht, W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 10, 253–263 (2011).

Turner, M. R. et al. [11C]-WAY100635 PET demonstrates marked 5-HT1A receptor changes in sporadic ALS. Brain 128, 896–905 (2005).

Lanctot, K. L. et al. Serotonin-1A receptors in frontotemporal dementia compared with controls. Psychiatry Res. 156, 247–250 (2007).

Bowen, D. M. et al. Imbalance of a serotonergic system in frontotemporal dementia: implication for pharmacotherapy. Psychopharmacology (Berl.) 196, 603–610 (2008).

Phukan, J., Pender, N. P. & Hardiman, O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 6, 994–1003 (2007).

Gamez, J. et al. Mutational analysis of the Cu/Zn superoxide dismutase gene in a Catalan ALS population: should all sporadic ALS cases also be screened for SOD1? J. Neurol. Sci. 247, 21–28 (2006).

Turner, M. R. et al. Volumetric cortical loss in sporadic and familial amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 8, 343–347 (2007).

Stanton, B. R. et al. Diffusion tensor imaging in sporadic and familial (D90A SOD1) forms of amyotrophic lateral sclerosis. Arch. Neurol. 66, 109–115 (2009).

Blain, C. R. et al. Differential corticospinal tract degeneration in homozygous 'D909A' SOD1 ALS and sporadic ALS. J. Neurol. Neurosurg. Psychiatry 82, 843–849 (2011).

Ng, M. C. et al. Abnormal diffusion tensor in nonsymptomatic familial amyotrophic lateral sclerosis with a causative superoxide dismutase 1 mutation. J. Magn. Reson. Imaging 27, 8–13 (2008).

Zhang, Y. et al. Progression of white matter degeneration in amyotrophic lateral scelrosis: a diffusion tensor imaging study. Amyotroph. Lateral Scler. doi:10.3109/17482968.2011.593036

Turner, M. R. et al. Towards a neuroimaging biomarker in amyotrophic lateral sclerosis. Lancet Neurol. 10, 400–403 (2011).

Filippini, N. et al. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 75, 1645–1652 (2010).

Agosta, F. et al. MRI predictors of long-term evolution in amyotrophic lateral sclerosis. Eur. J. Neurosci. 32, 1490–1496 (2010).