Định vị biomacromolecule trong tế bào vi khuẩn qua cơ chế khuếch tán và bắt giữ

Annals of Microbiology - Tập 63 - Trang 825-832 - 2013
Miguel Angel Pérez Rodriguez1,2, Xianwu Guo2
1Centro de Investigacion en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Unidad Altamira, Mexico
2Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd. Reynosa, Mexico

Tóm tắt

Định vị subcellular của biomacromolecules ( nucleotide và protein) là cơ sở cho chức năng đúng đắn của chúng trong tế bào vi khuẩn. Một mô hình để giải thích sự định vị của biomacromolecules, đặc biệt là protein, là "khuếch tán và bắt giữ". Trong mô hình này, protein được định vị bằng cách khuếch tán qua tế bào chất hoặc màng cho đến khi gắn với một protein hoặc các protein khác đã được tích tụ trước đó trong tế bào. Việc sử dụng các sự kết hợp với protein huỳnh quang để theo dõi số phận của biomacromolecules đã mang lại cái nhìn mới về các cơ chế định vị phân tử trong tế bào sống. Ở đây, một số protein đã được trình bày theo cơ chế khuếch tán và bắt giữ để đạt đến vị trí thích hợp của chúng trong tế bào. Một số RNA cũng dường như định vị theo cơ chế này. Đây là một đặc điểm tự nhiên rằng thông tin về định vị phân tử nên tồn tại trong các chuỗi của chính protein. Tuy nhiên, rất ít thông tin đã có sẵn trong lĩnh vực này cho đến nay.

Từ khóa

#biomacromolecules #vi khuẩn #định vị #khuếch tán #bắt giữ #protein #RNA

Tài liệu tham khảo

Alley MR, Maddock JR et al (1992) Polar localization of a bacterial chemoreceptor. Genes Dev 6(5):825–836 Anderson DE, Gueiros-Filho FJ et al (2004) Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J Bacteriol 186(17):5775–5781 Ben-Yehuda S, Losick R (2002) Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109(2):257–266 Ben-Yehuda S, Rudner DZ et al (2003) RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299(5606):532–536 Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354(6349):161–164 Blaylock B, Jiang X et al (2004) Zipper-like interaction between proteins in adjacent daughter cells mediates protein localization. Genes Dev 18(23):2916–2928 Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci USA 77(3):1496–1500 Bowman GR, Comolli LR et al (2008) A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134(6):945–955 Burton GJ, Hecht GB et al (1997) Roles of the histidine protein kinase pleC in Caulobacter crescentus motility and chemotaxis. J Bacteriol 179(18):5849–5853 Calderone V, Forleo C et al (2004) The first structure of a bacterial class B acid phosphatase reveals further structural heterogeneity among phosphatases of the haloacid dehalogenase fold. J Mol Biol 335(3):761–773 Campo N, Marquis KA et al (2008) SpoIIQ anchors membrane proteins on both sides of the sporulation septum in bacillus subtilis. J Biol Chem 283(8):4975–4982 Collier J, Shapiro L (2007) Spatial complexity and control of a bacterial cell cycle. Curr Opin Biotechnol 18(4):333–340 Cutting S, Roels S et al (1991) Sporulation operon spoIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis. J Mol Biol 221(4):1237–1256 Cha JH, Stewart GC (1997) The divIVA minicell locus of Bacillus subtilis. J Bacteriol 179(5):1671–1683 Chou KC, Shen HB (2007) Recent progress in protein subcellular location prediction. Anal Biochem 370(1):1–16 Deich J, Judd EM et al (2004) Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proc Natl Acad Sci USA 101(45):15921–15926 Doan T, Marquis KA et al (2005) Subcellular localization of a sporulation membrane protein is achieved through a network of interactions along and across the septum. Mol Microbiol 55(6):1767–1781 Elowitz MB, Surette MG et al (1999) Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol 181(1):197–203 Emanuelsson O, Brunak S et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971 Errington J (2010) From spores to antibiotics via the cell cycle. Microbiology 156(1):1–13 Errington J, Daniel RA et al (2003) “Cytokinesis in bacteria.”. Microbiol Mol Biol Rev: MMBR 67(1):52–65, table of contents Eswaramoorthy P, Erb ML et al (2011) Cellular architecture mediates DivIVA ultrastructure and regulates min activity in Bacillus subtilis. MBio 2(6) Figge RM, Easter J et al (2003) Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Mol Microbiol 47(5):1225–1237 Flardh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7(1):36–49 Fogel MA, Waldor MK (2006) A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev 20(23):3269–3282 Gitai Z, Dye NA et al (2005) MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120(3):329–341 Golding I, Cox EC (2004) RNA dynamics in live Escherichia coli cells. Proc Natl Acad Sci USA 101(31):11310–11315 Hahn J, Kramer N et al (2009) McsA and B mediate the delocalization of competence proteins from the cell poles of Bacillus subtilis. Mol Microbiol 72(1):202–215 Hale CA, de Boer PA (1997) Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 88(2):175–185 Haney SA, Glasfeld E et al (2001) Genetic analysis of the Escherichia coli FtsZ.ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J Biol Chem 276(15):11980–11987 Hughes HV, Huitema E et al (2010) Protein localization and dynamics within a bacterial organelle. Proc Natl Acad Sci USA 107(12):5599–5604 Ireland MME, Karty JA et al (2002) Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake. Mol Microbiol 45(4):1029–1041 Keiler KC (2011) RNA localization in bacteria. Curr Opin Microbiol 14(2):155–159 Kim SY, Gitai Z et al (2006) Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc Natl Acad Sci USA 103(29):10929–10934 Komeili A (2012) Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev 36(1):232–255 Lenarcic R, Halbedel S et al (2009) Localisation of DivIVA by targeting to negatively curved membranes. EMBO J 28(15):2272–2282 Li Z, Trimble MJ et al (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26(22):4694–4708 Lin Y, Crosson S et al (2010) Single-gene tuning of Caulobacter cell cycle period and noise, swarming motility, and surface adhesion. Mol Syst Biol 6:445 Liu Z, Mukherjee A et al (1999) Recruitment of ZipA to the division site by interaction with FtsZ. Mol Microbiol 31(6):1853–1861 Loose M, Kruse K et al (2011) Protein self-organization: lessons from the Min system. Annu Rev Biophys 40(1):315–336 Michaelis AM, Gitai Z (2010) Dynamic polar sequestration of excess MurG may regulate enzymatic function. J Bacteriol 192(18):4597–4605 Mignot T, Shaevitz JW (2008) Active and passive mechanisms of intracellular transport and localization in bacteria. Curr Opin Microbiol 11(6):580–585 Mika JT, Poolman B (2011) Macromolecule diffusion and confinement in prokaryotic cells. Curr Opin Biotechnol 22(1):117–126 Nevo-Dinur K, Nussbaum-Shochat A et al (2011) Translation-independent localization of mRNA in E. coli. Science 331(6020):1081–1084 Niu LL, Yu J (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J 95(4):2009–2016 Ohta N, Lane T et al (1992) A histidine protein kinase homologue required for regulation of bacterial cell division and differentiation. Proc Natl Acad Sci USA 89(21):10297–10301 Osawa M, Anderson DE et al (2008) “Reconstitution of contractile FtsZ rings in liposomes.”. Science 320(5877):792–794 Patrick JE, Kearns DB (2008) MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol Microbiol 70(5):1166–1179 Pichoff S, Lutkenhaus J (2002) Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J 21(4):685–693 Pichoff S, Lutkenhaus J (2005) Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol 55(6):1722–1734 Pichoff S, Lutkenhaus J (2007) Identification of a region of FtsA required for interaction with FtsZ. Mol Microbiol 64(4):1129–1138 Ramamurthi KS (2011) Molecular biology. mRNA delivers the goods. Science 331(6020):1021–1022 Ramamurthi KS, Lecuyer S et al (2009) Geometric Cue for protein localization in a bacterium. Science 323(5919):1354–1357 Ramamurthi KS, Losick R (2009) Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc Natl Acad Sci USA 106(32):13541–13545 Ringgaard S, Schirner K et al (2011) “A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins.”. Genes Dev 25(14):1544–1555 Rubio A, Pogliano K (2004) Septal localization of forespore membrane proteins during engulfment in Bacillus subtilis. EMBO J 23(7):1636–1646 Rudner DZ et al (2002) Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture. ETATS-UNIS, National Academy of Sciences, Washington, DC Rudner DZ, Losick R (2002) A sporulation membrane protein tethers the pro-sigmaK processing enzyme to its inhibitor and dictates its subcellular localization. Genes Dev 16(8):1007–1018 Rudner DZ, Losick R (2010) Protein subcellular localization in bacteria. Cold Spring Harb Perspect Biol 2(4):a000307 Scheffers DJ, Robichon C et al (2007) Contribution of the FtsQ transmembrane segment to localization to the cell division site. J Bacteriol 189(20):7273–7280 Shapiro L, McAdams HH et al (2002) Generating and exploiting polarity in bacteria. Science 298(5600):1942–1946 Shapiro L, McAdams HH et al (2009) Why and How bacteria localize proteins. Science 326(5957):1225–1228 Stragier P, Losick R (1996) Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 30:297–341 Straub AC, Billaud M et al (2011) Compartmentalized connexin 43 S-nitrosylation/denitrosylation regulates heterocellular communication in the vessel wall. Arterioscler Thromb Vasc Biol 31(2):399–U353 Thanbichler M, Shapiro L (2008) Getting organized—how bacterial cells move proteins and DNA. Nat Rev Microbiol 6(1):28–40 Uehara T, Parzych KR et al (2010) Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J 29(8):1412–1422 van den Ent F, Lowe J (2000) Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J 19(20):5300–5307 Vats P, Yu J et al (2009) The dynamic nature of the bacterial cytoskeleton. Cell Mol Life Sci 66(20):3353–3362 Viollier PH, Sternheim N et al (2002) Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins. Proc Natl Acad Sci USA 99(21):13831–13836 von Heijne G (1990) The signal peptide. J Membr Biol 115(3):195–201 Wagner JK, Galvani CD et al (2005) Caulobacter crescentus requires RodA and MreB for stalk synthesis and prevention of ectopic pole formation. J Bacteriol 187(2):544–553 Yu YT, Kroos L (2000) Evidence that SpoIVFB is a novel type of membrane metalloprotease governing intercompartmental communication during Bacillus subtilis sporulation. J Bacteriol 182(11):3305–3309