Biological turnovers in response to marine incursion into the Caspian Sea at the Plio-Pleistocene transition

Global and Planetary Change - Tập 206 - Trang 103623 - 2021
Thomas M. Hoyle1, Suzanne A.G. Leroy2,3, Lourdes López-Merino4,5, Christiaan G.C. van Baak1, Antonio Martínez Cortizas5, Keith Richards3,6, Vusala Aghayeva7,8
1CASP, West Building, Madingley Rise, Madingley Road, CB3 0UD, Cambridge, United Kingdom
2Aix Marseille Univ, CNRS, Minist Culture, LAMPEA, UMR 7269, 13094 Aix-en-Provence, France
3School of Environmental Sciences, University of Liverpool, L69 3GP Liverpool, United Kingdom
4ENVIROVEG (grupo UCM 910164), Unidad de Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
5CRETUS, EcoPast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
6KrA Stratigraphic Ltd., 116 Albert Drive, LL31 9YY Conwy, United Kingdom
7Department Angewandte Geowissenschaften und Geophysik, Montanuniversität Leoben, A-8700 Leoben, Austria
8Department of Palaeogeography, Institute of Geography, 115, Avenue H. Javid., AZ1143 Baku, Azerbaijan

Tài liệu tham khảo

Agalarova, 1940 Andreetto, 2021, Freshening of the Mediterranean Salt Giant: controversies and certainties around the terminal (Upper Gypsum and Lago-Mare) phases of the Messinian Salinity Crisis, Earth Sci. Rev., 216, 103577, 10.1016/j.earscirev.2021.103577 Arkema, 2013, Coastal habitats shield people and property from sea-level rise and storms, Nat. Clim. Chang., 3, 913, 10.1038/nclimate1944 Arpe, 2018, Quantification of climatic feedbacks on the Caspian Sea level variability and impacts from the Caspian Sea on the large-scale atmospheric circulation, Theor. Appl. Climatol., 1–14 Audzijonyte, 2006, Comparative phylogeography of Ponto-Caspian mysid crustaceans: isolation and exchange among dynamic inland sea basins, Mol. Ecol., 15, 2969, 10.1111/j.1365-294X.2006.03018.x Baranyi, 2021, Paleoenvironmental changes and vegetation of the Transylvanian Basin in the early stages of Lake Pannon (late Miocene, Tortonian), Rev. Palaeobot. Palynol., 284, 104340, 10.1016/j.revpalbo.2020.104340 Bekturganov, 2017, The Eurasia canal as a factor of economic prosperity for the Caspian region, Geogr. Environ. Sustain., 10, 34, 10.24057/2071-9388-2017-10-1-34-43 Bennett Bintanja, 2008, North American ice-sheet dynamics and the onset of 100,000-year glacial cycles, Nature, 454, 869, 10.1038/nature07158 Birks, 2012 Brenner, 2005, Holocene environmental history of the Gotland Basin (Baltic Sea) - a micropalaeontological model, Palaeogeogr. Palaeoclimatol. Palaeoecol., 220, 227, 10.1016/j.palaeo.2004.12.010 Brigham-Grette, 2013, Pliocene warmth, polar amplification, and stepped pleistocene cooling recorded in NE Arctic Russia, Science, 340, 1421, 10.1126/science.1233137 Bringué, 2013, Seasonal production of organic-walled dinoflagellate cysts in an upwelling system: a sediment trap study from the Santa Barbara Basin, California, Mar. Micropaleontol., 100, 34, 10.1016/j.marmicro.2013.03.007 Castellanos-Galindo, 2020, A new wave of marine fish invasions through the Panama and Suez canals, Nat. Ecol. Evol., 4, 1444, 10.1038/s41559-020-01301-2 Chepalyga, 2007, The late glacial great flood in the Ponto-Caspian basin, 119 Cziczer, 2009, Life in the sublittoral zone of long-lived Lake Pannon: paleontological analysis of the Upper Miocene Szák Formation, Hungary, Int. J. Earth Sci., 98, 1741, 10.1007/s00531-008-0322-3 De Boer, 2010, Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records, Ann. Glaciol., 51, 23, 10.3189/172756410791392736 De Schepper, 2009, Pliocene and Pleistocene dinoflagellate cyst and acritarch zonation of DSDP Hole 610A, eastern North Atlantic, Palynology, 33, 179, 10.2113/gspalynol.33.1.179 Dutton, 2015, Sea-level rise due to polar ice-sheet mass loss during past warm periods, Science, 349, 153, 10.1126/science.aaa4019 Eriksson, 1999 Evitt, 1985, Gonyaulax cysts from Lake Zϋrich sediments, Rev. Palaeobot. Palynol., 45, 35, 10.1016/0034-6667(85)90064-8 Flecker, 2006, Identifying Late Miocene episodes of connection and isolation in the Mediterranean-Paratethyan realm using Sr isotopes, Sediment. Geol., 188–189, 189, 10.1016/j.sedgeo.2006.03.005 Galil, 2008, 59 Gavrieli, 2005, The expected impact of the peace conduit project (The Red Sea - Dead Sea Pipeline) on the Dead Sea, Mitig. Adapt. Strateg. Glob. Chang., 10, 3, 10.1007/s11027-005-7811-5 Giralt, 2003, Cyclic water level oscillations of the KaraBogazGol - Caspian Sea system, Earth Planet. Sci. Lett., 212, 225, 10.1016/S0012-821X(03)00259-0 Grimm, 1987, Constrained cluster analysis by the method of incremental sum of squares, Comput. Geosci., 13, 13, 10.1016/0098-3004(87)90022-7 Grothe, 2016 Grothe, 2020, Paratethys pacing of the Messinian Salinity Crisis: low salinity waters contributing to gypsum precipitation?, Earth Planet. Sci. Lett., 532, 116029, 10.1016/j.epsl.2019.116029 Gu, 2013, First record of pentapharsodinium (peridiniales, dinophyceae) in the China Sea, with description of pentapharsodiniumdalei var. aciculiferum, Phycol. Res., 61, 256, 10.1111/pre.12024 Hernández-Molina, 2006, The contourite depositional system of the Gulf of Cádiz: a sedimentary model related to the bottom current activity of the Mediterranean outflow water and its interaction with the continental margin, Deep. Res. Part II Top. Stud. Oceanogr., 53, 1420, 10.1016/j.dsr2.2006.04.016 Hinds, 2004, Sedimentation in a discharge dominated fluvial-lacustrine system: the Neogene Productive Series of the South Caspian Basin, Azerbaijan, Mar. Pet. Geol., 21, 613, 10.1016/j.marpetgeo.2004.01.009 Hoyle, 2018, Using fluorescence microscopy to discern in situ from reworked palynomorphs in dynamic depositional environments — an example from sediments of the late Miocene to early Pleistocene Caspian Sea, Rev. Palaeobot. Palynol., 256, 32, 10.1016/j.revpalbo.2018.05.005 Hoyle, 2019, Where should we draw the lines between dinocyst “ species ”? Morphological continua in Black Sea dinocysts, J. Micropalaeontol., 38, 55, 10.5194/jm-38-55-2019 Hoyle, 2020, Vegetation succession and climate change across the Plio-Pleistocene transition in eastern Azerbaijan, central Eurasia (2.77–2.45 Ma), Palaeogeogr. Palaeoclimatol. Palaeoecol., 538, 109386, 10.1016/j.palaeo.2019.109386 Jones, 2017, Review of calcium carbonate polymorph precipitation in spring systems, Sediment. Geol., 353, 64, 10.1016/j.sedgeo.2017.03.006 Jones, 1996, A review of the stratigraphy of eastern Paratethys (Oligocene-Holocene), Bull. Nat. Hist. Mus., 52, 25 Kazanci, 2004, Sedimentary and environmental characteristics of the Gilan-Mazenderan plain, northern Iran: influence of long- and short-term Caspian water level fluctuations on geomorphology, J. Mar. Syst., 46, 145, 10.1016/j.jmarsys.2003.12.002 Kosarev, 2009, kara-bogaz-gol bay: physical and chemical evolution, Aquat. Geochem., 15, 223, 10.1007/s10498-008-9054-z Kovalevsky, 1933, The face of the Caspian Sea Krijgsman, 1999, Chronology, causes and progression of the Messinian salinity crisis, Nature, 400, 10.1038/23231 Krijgsman, 2019, Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution, Earth-Sci. Rev., 188, 1, 10.1016/j.earscirev.2018.10.013 Krumova-Valcheva, 2017, Escherichia coli and Paralytic shellfish poisoning toxins contamination of mussels farmed in Bulgarian Black Sea Coast, Acta Microbiol. Bulg., 33, 30 Lazarev, 2019, Magneto-biostratigraphic age constraints on the palaeoenvironmental evolution of the South Caspian basin during the Early-Middle Pleistocene (Kura basin, Azerbaijan), Quat. Sci. Rev., 222, 105895, 10.1016/j.quascirev.2019.105895 Lazarev, 2021 Leiva-Dueñas, 2020, Factors regulating primary producers’ assemblages in Posidonia oceanica (L.) Delile ecosystems over the past 1800 years, Sci. Total Environ., 718, 137163, 10.1016/j.scitotenv.2020.137163 Leroy, 2006, Natural and anthropogenic rapid changes in the Kara-Bogaz Gol over the last two centuries reconstructed from palynological analyses and a comparison to instrumental records, Quat. Int., 150, 52, 10.1016/j.quaint.2006.01.007 Leroy, 2007, River inflow and salinity changes in the Caspian Sea during the last 5500 years, Quat. Sci. Rev., 26, 3359, 10.1016/j.quascirev.2007.09.012 Leroy, 2013, A two-step expansion of the dinocyst Lingulodinium machaerophorum in the Caspian Sea: the role of changing environment, Quat. Sci. Rev., 77, 31, 10.1016/j.quascirev.2013.06.026 Leroy, 2018, Multi-proxy indicators in a pontocaspian system: a depth transect of surface sediment in the SE Caspian Sea, Geol. Belg., 21, 143, 10.20341/gb.2018.008 Leroy, 2020, Past and current changes in the largest lake of the world: the Caspian Sea, 65 Lewis, 1999, Preliminary observations of cyst-theca relationships in Spiniferites ramosus and Spiniferites membranaceus (Dinophyceae), Grana, 38, 113, 10.1080/00173139908559220 Lisiecki, 2005, A Pliocene-Pleistocene stack of 57 globally distributed benthic δO records, Paleoceanography, 20, 1 Lotse, 2003, The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies, J. Cryst. Growth, 254, 206, 10.1016/S0022-0248(03)01153-9 Luckas, 2005, Overview of key phytoplankton toxins and their recent occurrence in the North and Baltic seas, Environ. Toxicol., 20, 1, 10.1002/tox.20072 Marret, 2004, New organic-walled dinoflagellate cysts from recent sediments of Central Asian seas, Rev. Palaeobot. Palynol., 129, 1, 10.1016/j.revpalbo.2003.10.002 Marzocchi, 2016, Mediterranean outflow pump: an alternative mechanism for the Lago-mare and the end of the Messinian Salinity Crisis, Geology, 44, 523, 10.1130/G37646.1 Meier, 2017, Impact of accelerated future global mean sea level rise on hypoxia in the Baltic Sea, Clim. Dyn., 49, 163, 10.1007/s00382-016-3333-y Mertens, 2009, Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments: investigating its potential as salinity proxy, Mar. Micropaleontol., 70, 54, 10.1016/j.marmicro.2008.10.004 Mertens, 2017, Cyst-theca relationship and phylogenetic position of impagidinium caspienense Incubated from Caspian Sea surface sediments: relation to Gonyaulax baltica and evidence for heterospory within gonyaulacoid dinoflagellates, J. Eukaryot. Microbiol., 64, 829, 10.1111/jeu.12417 Miller, 2005, The Phanerozoic record of global sea-level change, Science, 310, 1293, 10.1126/science.1116412 Moore, 2019, An index of fisheries closures due to harmful algal blooms and a framework for identifying vulnerable fishing communities on the U.S. West Coast, Mar. Policy, 110, 103543, 10.1016/j.marpol.2019.103543 Morse, 1997, Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater, Geology, 25, 85, 10.1130/0091-7613(1997)025<0085:IOTAMC>2.3.CO;2 Mudie, 2001, Late Quaternary dinoflagellate cysts from the Black, Marmara and Aegean seas: variations in assemblages, morphology and paleosalinity, Mar. Micropaleontol., 43, 155, 10.1016/S0377-8398(01)00006-8 Mudie, 2002, Dinoflagellate cysts, freshwater algae and fungal spores as salinity indicators in Late Quaternary cores from Marmara and Black seas, Mar. Geol., 190, 203, 10.1016/S0025-3227(02)00348-1 Mudie, 2004, Late glacial, Holocene and modern dinoflagellate cyst assemblages in the Aegean-Marmara-Black Sea corridor: statistical analysis and re-interpretation of the early Holocene Noah’s Flood hypothesis, Rev. Palaeobot. Palynol., 128, 143, 10.1016/S0034-6667(03)00117-9 Mudie, 2011, Nonpollen palynomorphs: indicators of salinity and environmental change in the Caspian – Black Sea – Mediterranean corridor, Geol. Soc. Am., 2473, 1 Mudie, 2017, Atlas of modern dinoflagellate cyst distributions in the Black Sea Corridor: from Aegean to Aral Seas, including Marmara, Black, Azov and Caspian Seas, Mar. Micropaleontol., 134, 1, 10.1016/j.marmicro.2017.05.004 Muratov, 1951, History of the Black Sea basin in connection with the development of its surrounding areas, Bull. MOIP, Sect. Geol. NS, 26, 7 Nicholls, 2013, On the lake effects of the Caspian Sea, Q. J. R. Meteorol. Soc., 140, 1399, 10.1002/qj.2222 Orhon, 2014, Istanbul canal needs environmental study, Nature, 513, 461, 10.1038/513461a Palcu, 2018 Palmer, 1992, Controls over the strontium isotope composition of river water, Geochim. Cosmochim. Acta, 56, 10.1016/0016-7037(92)90332-D Palo, 2006, The enigma of the landlocked Baikal and Caspian seals addressed through phylogeny of phocine mitochondrial sequences, Biol. J. Linn. Soc., 88, 61, 10.1111/j.1095-8312.2006.00607.x Pospelova, 2006, Dinoflagellate cysts as indicators of climatic and oceanographic changes during the past 40 kyr in the Santa Barbara Basin, southern California, Paleoceanography, 21, 10.1029/2005PA001251 Prange, 2020, The other side of sea level change, Commun. Earth Environ., 1, 1, 10.1038/s43247-020-00075-6 Reynolds, 1998, Implications of outcrop geology for reservoirs in the neogene productive series: Apsheron Peninsula, Azerbaijan, Am. Assoc. Pet. Geol. Bull., 82, 25 Richards, 2018, Palynology and micropalaeontology of the Pliocene - Pleistocene transition in outcrop from the western Caspian Sea, Azerbaijan: potential links with the Mediterranean, Black Sea and the Arctic Ocean?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 511, 119, 10.1016/j.palaeo.2018.07.018 Richards, 2021, Palynology and sedimentology of the Pliocene Productive Series from eastern Azerbaijan, Palynology, 0, 1 Rochon, 2009, The Gonyaulax spinifera (Dinophyceae) “complex”: perpetuating the paradox?, Rev. Palaeobot. Palynol., 155, 52, 10.1016/j.revpalbo.2008.12.017 Rohling, 2014, Sea-level and deep-sea-temperature variability over the past 5.3 million years, Nature, 508, 477, 10.1038/nature13230 Sala-Pérez, 2020, Dinoflagellate cyst assemblages as indicators of environmental conditions and shipping activities in coastal areas of the Black and Caspian Seas, Reg. Stud. Mar. Sci., 39, 101472 Santisteban, 2004, Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments?, J. Paleolimnol., 32, 287, 10.1023/B:JOPL.0000042999.30131.5b Schönfeld, 1997, The impact of the Mediterranean Outflow Water (MOW) on benthic foraminiferal assemblages and surface sediments at the southern Portuguese continental margin, Mar. Micropaleontol., 29, 211, 10.1016/S0377-8398(96)00050-3 Sluijs, 2005, From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene, Earth-Sci. Rev., 68, 281, 10.1016/j.earscirev.2004.06.001 Slynko, 2002, The Caspian-Volga-Baltic invasion corridor, 399 Sobrino, 2012, Environmental change in the Ría de Vigo , NW Iberia, since the mid-Holocene: new palaeoecological and seismic evidence, Boreas Soliman, 2017, Late Miocene (Tortonian) gonyaulacacean dinoflagellate cysts from the Vienna Basin, Austria, Rev. Palaeobot. Palynol., 244, 325, 10.1016/j.revpalbo.2017.02.003 Son, 2020, Caspian invaders vs. Ponto-Caspian locals – range expansion of invasive macroinvertebrates from the volga basin results in high biological pollution of the Lower Don River, Manag. Biol. Invasions, 11, 178, 10.3391/mbi.2020.11.2.02 Stoica, 2016, Paratethyan ostracods in the Spanish Lago-Mare: more evidence for interbasinal exchange at high Mediterranean sea level, Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 10.1016/j.palaeo.2015.10.034 Strakhov, 1971, Geochemical evolution of the Black Sea in the Holocene, Lithol. Miner. Resour., 3, 263 Sütőné Szentai, 2011, Az Egerág-7. és Bosta-1. számú fúrások pannóniai dinoflagellata együttesei (Dél-Dunántúl), e-Acta Nat. Pannonica, 2, 111 Sütö-Szentai, 1982, A Tengelic-2. sz. fúrás pannóniai képződményeinek szervesvázú mikroplankton és sporomorpha maradványai (Organic microplanktonic and sporomorphous remains from the Pannonian from the borehole Tengelic 2), Ann. Inst. Geol. Public. Hung., 65, 216 Sütö-Szentai, 2000 Sütö-Szentai, 2010, Definition and description of new dinoflagellate genus, species and subspecies from the Pannonian Stage (Hungary), Acta Nat. Pannonica, 1, 223 Svitoch, 2000, Paleohydrology of the Black Sea Pleistocene Basins, Water Resour., 27, 655, 10.1023/A:1026661801941 Thomas, 2005, Controls of the surface water partial pressure of CO2 in the North Sea, Biogeosciences, 2, 323, 10.5194/bg-2-323-2005 Van Baak, 2013, A magnetostratigraphic time frame for Plio-Pleistocene transgressions in the South Caspian Basin, Azerbaijan, Glob. Planet. Change, 103, 119, 10.1016/j.gloplacha.2012.05.004 Van Baak, 2019, Flooding of the Caspian Sea at the intensification of Northern Hemisphere Glaciations, Glob. Planet. Change, 174, 153, 10.1016/j.gloplacha.2019.01.007 Vandendorpe, 2019, Historical faunal exchange between the Pontocaspian Basin and North America, Ecol. Evol., 9, 10816, 10.1002/ece3.5602 Vincent, 2010, Contrasting Pliocene fluvial depositional systems within the rapidly subsiding South Caspian Basin; a case study of the palaeo-Volga and palaeo-Kura river systems in the Surakhany Suite, Upper Productive Series, onshore Azerbaijan, Mar. Pet. Geol., 27, 2079, 10.1016/j.marpetgeo.2010.09.007 Vinogradov, 1969 Virtasalo, 2016, Base of brackish-water mud as key regional stratigraphic marker of mid-Holocene marine flooding of the Baltic Sea Basin, Geo-Mar. Lett., 36, 445, 10.1007/s00367-016-0464-4 Wall, 1966, “Living Fossils” in Western Atlantic Plankton, Nature, 211, 1025, 10.1038/2111025a0 Weiskopf, 2020, Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States, Sci. Total Environ., 733, 137782, 10.1016/j.scitotenv.2020.137782 Xu, 2018, Aragonite formation in confinements: a step toward understanding polymoprh control, PNAS, 115, 8469, 10.1073/pnas.1811696115 Yanina, 2014, The Ponto-Caspian region: environmental consequences of climate change during the Late Pleistocene, Quat. Int., 345, 88, 10.1016/j.quaint.2014.01.045 Zonneveld, 2008, Preservation and organic chemistry of Late Cenozoic organic-walled dinoflagellate cysts: a review, Mar. Micropaleontol., 68, 179, 10.1016/j.marmicro.2008.01.015 Zonneveld, 2013, Atlas of modern dinoflagellate cyst distribution based on 2405 data points, Rev. Palaeobot. Palynol., 191, 1, 10.1016/j.revpalbo.2012.08.003 Zubakov, 1992, The Caspian transgression as an indicator of the interglacial-glacial transition, 253