Biological roles of glycans

Glycobiology - Tập 27 Số 1 - Trang 3-49 - 2017
Ajit Varki1
1Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA [email protected].

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1093/glycob/3.2.97

10.1016/0092-8674(95)90380-1

10.1146/annurev.bi.64.070195.000553

10.1146/annurev.cb.11.110195.003125

10.1016/0167-4838(94)00230-E

10.1126/science.272.5258.60

10.1016/S0959-440X(96)80036-4

10.1146/annurev.bi.65.070196.002443

Fukuda, 1996, Possible roles of tumor-associated carbohydrate antigens, Cancer Res, 56, 2237

10.1016/0968-0004(96)10034-7

Hakomori, 1996, Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism, Cancer Res, 56, 5309

Hooper, 1996, From legumes to leukocytes: Biological roles for sulfated carbohydrates, FASEB J, 10, 1137, 10.1096/fasebj.10.10.8751716

Kansas, 1996, Selectins and their ligands: Current concepts and controversies, Blood, 88, 3259, 10.1182/blood.V88.9.3259.bloodjournal8893259

10.1093/oxfordjournals.jbchem.a021192

10.1007/BF01053186

10.1016/S0959-440X(96)80035-2

10.1515/bchm3.1996.377.6.325

10.1016/S0955-0674(96)80109-8

10.1002/(SICI)1097-4644(19960616)61:4<562::AID-JCB9>3.0.CO;2-M

10.1093/glycob/7.6.725

10.1146/annurev.biochem.66.1.315

10.1016/S0074-7696(08)62127-0

10.3181/00379727-215-44121

10.1023/A:1018584425879

10.1016/S0955-0674(97)80029-4

Von, 1997, Sialic acids and sialic acid-recognising proteins: Drug discovery targets and potential glycopharmaceuticals, Curr Med Chem, 4, 185, 10.2174/0929867304666220313111728

Etzler, 1998, Oligosaccharide signaling of plant cells, J Cell Biochem, 30-31, 123, 10.1002/(SICI)1097-4644(1998)72:30/31+<123::AID-JCB16>3.0.CO;2-Y

10.1002/(SICI)1521-1878(199802)20:2<156::AID-BIES8>3.0.CO;2-R

10.1146/annurev.biochem.67.1.49

10.1146/annurev.biochem.67.1.609

10.1016/S0945-053X(98)90093-2

10.1074/jbc.273.39.24979

10.1023/A:1006924128550

10.1111/j.1749-6632.1998.tb09663.x

10.1146/annurev.biochem.68.1.729

10.1007/s002510050590

Carchon, 1999, Carbohydrate-deficient glycoprotein syndrome type IA (phosphomannomutase-deficiency), Biochim Biophys Acta Mol Basis Dis, 1455, 155, 10.1016/S0925-4439(99)00073-3

10.1093/glycob/9.10.979

Freeze, 1999, Molecular basis of carbohydrate-deficient glycoprotein syndromes type I with normal phosphomannomutase activity, Biochim Biophys Acta Mol Basis Dis, 1455, 167, 10.1016/S0925-4439(99)00072-1

Kobata, 1999, Structure, pathology and function of the N-linked sugar chains of human chorionic gonadotropin, Biochim Biophys Acta Mol Basis Dis, 1455, 315, 10.1016/S0925-4439(99)00060-5

Schachter, 1999, Carbohydrate-deficient glycoprotein syndrome type II, Biochim Biophys Acta Mol Basis Dis, 1455, 179, 10.1016/S0925-4439(99)00054-X

Schuette, 1999, The glycosphingolipidoses-from disease to basic principles of metabolism, Biol Chem Hoppe Seyler, 380, 759

10.1016/S0955-0674(00)00134-4

10.1093/glycob/10.10.951

10.1023/A:1011086929064

10.1023/A:1011082728155

10.1023/A:1011074510409

10.1023/A:1011006122704

10.1083/jcb.148.2.227

10.1006/clim.2000.4912

10.1023/A:1011014307683

10.1146/annurev.biochem.69.1.69

10.1038/35008000

10.1006/bbrc.2000.2600

10.1023/A:1011034912226

10.1023/A:1011010206774

10.1016/S0168-9525(00)01997-1

10.1007/PL00000690

10.1093/oxfordjournals.jbchem.a022590

10.1023/A:1011078627247

10.1016/S0962-8924(01)01925-0

10.1126/science.1059820

10.1016/S0968-0004(01)01942-9

10.1016/S0959-440X(00)00254-2

10.1016/S0955-0674(00)00233-7

10.1016/S0300-9084(01)01292-5

10.1093/glycob/11.12.129R

10.1074/jbc.R100049200

10.1093/glycob/11.4.45R

10.1096/fj.01-0094rev

10.1126/science.291.5512.2364

10.1093/glycob/11.2.1R

10.1172/JCI200113560

10.1016/S0092-8674(01)00277-X

10.1093/glycob/11.4.37R

10.1002/1521-3773(20010504)40:9<1576::AID-ANIE15760>3.0.CO;2-G

10.1126/science.291.5512.2370

10.1146/annurev.cellbio.17.1.1

10.1016/S0065-230X(01)83003-7

10.1016/S0300-9084(01)01308-6

10.1038/89305

Angata, 2002, I-type lectins, Biochim Biophys Acta, 1572, 294, 10.1016/S0304-4165(02)00316-1

10.1016/S0304-4165(02)00312-4

10.1093/glycob/12.6.79R

10.1016/S0304-4165(02)00317-3

10.1146/annurev.biochem.71.110601.135458

10.1073/pnas.012540899

10.1016/S0304-4165(02)00320-3

10.1093/glycob/12.1.1R

10.1074/jbc.R100064200

10.1016/S0955-0674(02)00367-8

10.1016/S1471-4906(02)02232-9

10.1146/annurev.biochem.71.110601.135414

10.1093/glycob/12.4.43R

10.1074/jbc.R100039200

10.1093/glycob/cwf066

10.1016/S0966-842X(02)02361-2

10.1146/annurev.biochem.72.121801.161809

10.1093/glycob/cwg077

10.1146/annurev.immunol.22.012703.104608

10.1016/j.semcdb.2004.03.006

10.1023/B:GLYC.0000043741.47559.30

10.1146/annurev.immunol.21.090501.080131

10.1146/annurev.biochem.73.011303.074043

10.1038/nrd1751

10.1097/01.moh.0000177827.78280.79

10.1097/01.wco.0000174604.42272.2d

10.1038/sj.embor.7400705

10.1007/s00018-005-5589-y

10.1016/j.cell.2006.08.019

10.1016/j.cell.2006.08.017

10.1152/physrev.00010.2005

10.1038/nri2056

10.1111/j.1471-4159.2007.04716.x

10.1146/annurev.cellbio.23.090506.123337

10.1038/nri2038

10.1042/BST0361472

10.1038/nri2417

10.1016/j.bbagen.2007.10.008

10.1111/j.1753-4887.2009.00239.x

10.1016/j.cbpa.2009.07.013

10.1038/nrd2804

10.1093/glycob/cwp066

10.1093/glycob/cwp076

10.1093/glycob/cwp186

10.1016/j.drudis.2010.06.001

10.1146/annurev.biochem.77.070606.100917

10.1016/j.semcancer.2010.04.005

10.1016/S0065-2318(10)64007-3

10.1016/j.bbagen.2011.06.016

10.1093/glycob/cwr036

10.1146/annurev-biochem-061809-152236

10.1016/j.sbi.2011.09.001

10.2741/3951

Dobson, 2012, O-Mannosylation and human disease, Cell Mol Life Sci, 70, 2849, 10.1007/s00018-012-1193-0

Gille, 2012, O-acetylation of plant cell wall polysaccharides, Front Plant Sci, 3, 12, 10.3389/fpls.2012.00012

10.1016/j.coviro.2012.03.003

10.1093/glycob/cws070

10.1093/glycob/cwt045

10.1093/humrep/des447

Ferrari, 2013, Oligogalacturonides: Plant damage-associated molecular patterns and regulators of growth and development, Front Plant Sci, 4, 49, 10.3389/fpls.2013.00049

10.1134/S0006297913070018

10.3389/fimmu.2014.00284

Bull, 2014, Sweet escape: Sialic acids in tumor immune evasion, Biochim Biophys Acta, 1846, 238

10.1093/glycob/cwu067

10.1016/B978-0-12-800097-7.00003-8

10.3109/10409238.2014.976606

Dall'Olio, 2014, Sialosignaling: Sialyltransferases as engines of self-fueling loops in cancer progression, Biochim Biophys Acta, 1840, 2752, 10.1016/j.bbagen.2014.06.006

10.1002/embj.201387442

10.1007/s12035-013-8536-1

10.1038/nri3737

10.1016/j.copbio.2014.06.014

Salama, 2014, Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation, Xenotransplantation, 22, 85, 10.1111/xen.12142

10.1038/nrmicro3346

10.1146/annurev-biochem-060713-035314

10.1016/j.jaci.2014.11.031

Langford-Smith, 2015, Complementing the sugar code: Role of GAGs and sialic acid in complement regulation, Front Immunol, 6, 25, 10.3389/fimmu.2015.00025

10.1146/annurev-biochem-060614-034420

10.1016/j.jmb.2016.03.025

Varki A , Lowe JB . 2009. Biological roles of glycans. In: Essentials of Glycobiology. Cold Spring Harbor (NY), p. 75–88.

10.1016/S0968-0004(98)01246-8

10.1016/S0304-4165(98)00127-5

10.1007/s000180050461

10.1093/glycob/9.8.747

10.1093/oxfordjournals.molbev.a026314

10.1074/jbc.M002630200

10.1016/S0304-4165(01)00153-2

10.1016/S0300-9084(01)01313-X

10.1016/S0304-4165(02)00311-2

10.1016/j.cell.2006.08.022

10.1093/glycob/cwm005

10.1074/jbc.R112.417857

10.1074/jbc.R112.424523

10.1093/nar/gkt1178

10.1016/j.tibs.2015.04.004

10.1186/s13062-016-0137-2

10.1038/ncb0908-1015

Varki A . 2011a. Evolutionary forces shaping the Golgi glycosylation machinery: Why cell surface glycans are universal to living cells. Cold Spring Harb Perspect Biol. 3, doi:pii: a005462. 10.1101/cshperspect.a005462 .

10.1126/science.1235681

Varki A , Sharon N . 2009. Historical Background and Overview. In: Varki A , Cummings RD , Esko JD , Freeze HH , Stanley P , Bertozzi CR , Hart GW , Etzler ME editors. Essentials of Glycobiology Cold Spring Harbor (NY), Cold Spring Harbor Laboratory Press. p. 1–22.

10.1007/s10719-008-9154-4

10.1038/35019075

10.1074/jbc.275.13.9604

10.1038/35019000

10.1074/jbc.M008073200

10.1074/jbc.M308756200

10.1074/jbc.M806202200

10.1073/pnas.1200425109

10.1016/S0959-440X(98)80145-0

10.1074/mcp.M100011-MCP200

10.1016/S1534-5807(01)00070-3

10.1038/nature00837

10.1093/hmg/ddg272

10.1097/00019052-200410000-00002

10.1038/88865

10.1093/hmg/ddg307

10.1016/j.cell.2004.06.003

10.1093/hmg/ddi062

10.1016/j.bbrc.2005.02.082

10.1074/jbc.M500069200

10.1126/science.1180512

10.1126/science.1214115

10.1093/glycob/cws152

10.1093/glycob/cwv021

10.1016/j.chembiol.2015.10.014

10.1038/ncomms11534

10.1016/j.celrep.2016.02.017

Praissman, 2016, The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition, Elife, 5, e14473, 10.7554/eLife.14473

10.1105/tpc.112.107334

10.1105/tpc.112.103390

10.1146/annurev-nutr-071813-105721

10.1016/j.cell.2005.06.035

10.1016/j.cell.2005.05.007

10.1046/j.1365-2958.1999.01415.x

10.1126/science.298.5599.1790

10.1074/jbc.M206114200

Knirel, 1986, Somatic antigens of Pseudomonas aeruginosa. The structure of O-specific polysaccharide chains of P. aeruginosa O10 (Lanyi) lipopolysaccharides, Eur J Biochem, 157, 129, 10.1111/j.1432-1033.1986.tb09648.x

10.1074/jbc.M104529200

10.1093/glycob/cwp039

10.1073/pnas.0902431106

10.1038/ncb2539

Dey G , Thattai M , Baum B . 2016. On the archaeal origins of eukaryotes and the challenges of inferring phenotype from genotype. Trends Cell Biol. doi:10.1016/j.tcb.2016.03.009.

Esko JD , Sharon N . 2009. Microbial Lectins: Hemagglutinins, Adhesins, and Toxins. In: Varki A , Cummings RD , Esko JD , Freeze HH , Stanley P , Bertozzi CR , Hart GW , Etzler ME , editors. Essentials of Glycobiology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. p. 489–500.

Neufeld EF , Ginsburg V . 1966. Complex Carbohydrates—Part A. New York: Academic Press.

Ginsburg V . 1972. Complex Carbohydrates—Part B. New York: Academic Press.

Ginsburg V . 1978. Complex Carbohydrates—Part C. New York: Academic Press.

10.1146/annurev.ph.28.030166.002251

10.1126/science.169.3941.141

10.1073/pnas.71.4.1078

Gottlieb, 1975, Deficient uridine diphosphate-N-acetylglucosamine:glycoprotein N-acetylglucosaminyltransferase activity in a clone of Chinese hamster ovary cells with altered surface glycoproteins, J Biol Chem, 250, 3303, 10.1016/S0021-9258(19)41514-7

10.1073/pnas.72.9.3323

Briles, 1977, Isolation of wheat germ agglutinin-resistant clones of Chinese hamster ovary cells deficient in membrane sialic acid and galactose, J Biol Chem, 252, 1107, 10.1016/S0021-9258(19)75213-2

Narasimhan, 1977, Control of glycoprotein synthesis. Lectin-resistant mutant containing only one of two distinct N-acetylglucosaminyltransferase activities present in wild type Chinese hamster ovary cells, J Biol Chem, 252, 3926, 10.1016/S0021-9258(17)40339-5

Li, 1978, Structure of the altered oligosaccharide present in glycoproteins from a clone of Chinese hamster ovary cells deficient in N-acetylglucosaminyltransferase activity, J Biol Chem, 253, 6426, 10.1016/S0021-9258(19)46950-0

10.1016/0092-8674(79)90259-9

Reitman, 1980, Mouse lymphoma cell lines resistant to pea lectin are defective in fucose metabolism, J Biol Chem, 255, 9900, 10.1016/S0021-9258(18)43477-1

Cummings, 1982, A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: Alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase, J Biol Chem, 257, 13421, 10.1016/S0021-9258(18)33465-3

Reitman, 1982, A lectin-resistant mouse lymphoma cell line is deficient in glucosidase II, a glycoprotein-processing enzyme, J Biol Chem, 257, 10357, 10.1016/S0021-9258(18)34027-4

10.1073/pnas.82.10.3197

Esko, 1987, Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I, J Biol Chem, 262, 12189, 10.1016/S0021-9258(18)45335-5

10.1038/175676a0

10.1073/pnas.52.3.750

10.1073/pnas.59.2.491

10.1016/0003-9861(69)90063-0

10.1126/science.172.3979.169

10.1073/pnas.70.2.347

10.1038/245065a0

10.1038/244509a0

Morell, 1971, The role of sialic acid in determining the survival of glycoproteins in the circulation, J Biol Chem, 246, 1461, 10.1016/S0021-9258(19)76994-4

10.1146/annurev.bi.51.070182.002531

10.1042/bj1760103

10.1073/pnas.75.3.1399

10.1073/pnas.74.5.2026

10.1073/pnas.76.9.4322

10.1016/0005-2795(74)90174-3

10.1073/pnas.76.4.1673

10.1016/0005-2795(80)90011-2

10.1111/j.1432-1033.1980.tb04410.x

Kornfeld, 1981, The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant, J Biol Chem, 256, 6633, 10.1016/S0021-9258(19)69037-X

10.1016/0006-291X(82)90947-0

10.1016/0022-2011(82)90012-X

10.1016/0006-291X(82)91122-6

10.1126/science.2552581

10.1073/pnas.76.7.3198

10.1073/pnas.76.3.1218

10.1073/pnas.77.11.6551

Ruoslahti E . 1988. Introduction. In: Bock G , Harnett S editors. Ciba Foundation Symposium: Carbohydrate Recognition in Cellular Function. New York: Wiley. p. 1–5.

10.1203/00006450-197210000-00002

10.1016/0006-291X(72)90310-5

Hasilik, 1980, Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues, J Biol Chem, 255, 4946, 10.1016/S0021-9258(19)85586-2

Tabas, 1980, Biosynthetic intermediates of beta-glucuronidase contain high mannose oligosaccharides with blocked phosphate residues, J Biol Chem, 255, 6633, 10.1016/S0021-9258(18)43616-2

Varki, 1980, Structural studies of phosphorylated high mannose-type oligosaccharides, J Biol Chem, 255, 10847, 10.1016/S0021-9258(19)70385-8

Varki, 1983, The spectrum of anionic oligosaccharides released by endo-beta-N-acetylglucosaminidase H from glycoproteins. Structural studies and interactions with the phosphomannosyl receptor, J Biol Chem, 258, 2808, 10.1016/S0021-9258(18)32790-X

Varki, 1980, Identification of a rat liver alpha-N-acetylglucosaminyl phosphodiesterase capable of removing “blocking” alpha-N-acetylglucosamine residues from phosphorylated high mannose oligosaccharides of lysosomal enzymes, J Biol Chem, 255, 8398, 10.1016/S0021-9258(18)43507-7

Goldberg, 1981, The phosphorylation of beta-glucuronidase oligosaccharides in mouse P388D1 cells, J Biol Chem, 256, 13060, 10.1016/S0021-9258(18)43006-2

10.1016/0006-291X(81)91177-3

10.1172/JCI110189

10.1073/pnas.78.12.7773

Waheed, 1981, Processing of the phosphorylated recognition marker in lysosomal enzymes. Characterization and partial purification of a microsomal alpha-N-acetylglucosaminyl phosphodiesterase, J Biol Chem, 256, 5717, 10.1016/S0021-9258(19)69265-3

Reitman, 1981, Lysosomal enzyme targeting. N-Acetylglucosaminylphosphotransferase selectively phosphorylates native lysosomal enzymes, J Biol Chem, 256, 11977, 10.1016/S0021-9258(18)43217-6

Reitman, 1981, UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-1-phosphotransferase. Proposed enzyme for the phosphorylation of the high mannose oligosaccharide units of lysosomal enzymes, J Biol Chem, 256, 4275, 10.1016/S0021-9258(19)69430-5

Sharp, 1984, Comparison of the structures and elicitor activities of a synthetic and a mycelial-wall-derived hexa(beta-D-glucopyranosyl)-D-glucitol, J Biol Chem, 259, 11341, 10.1016/S0021-9258(18)90867-7

Sharp, 1984, Purification and partial characterization of a beta-glucan fragment that elicits phytoalexin accumulation in soybean, J Biol Chem, 259, 11312, 10.1016/S0021-9258(18)90864-1

Sharp, 1984, The primary structures of one elicitor-active and seven elicitor-inactive hexa(beta-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea, J Biol Chem, 259, 11321, 10.1016/S0021-9258(18)90865-3

10.1038/314615a0

10.1126/science.4001928

10.1084/jem.172.1.263

Spertini, 1991, Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion, J Immunol, 147, 2565, 10.4049/jimmunol.147.8.2565

10.1016/0092-8674(91)90174-W

McEver, 1991, Selectins: Novel receptors that mediate leukocyte adhesion during inflammation, Thromb Haemost, 65, 223, 10.1055/s-0038-1647488

10.1073/pnas.88.22.10372

10.1083/jcb.115.2.557

10.1016/0006-291X(92)90697-J

10.1002/bies.950141210

10.1016/0006-291X(92)92376-9

10.1093/glycob/2.4.373

Larkin, 1992, Spectrum of sialylated and nonsialylated fuco-oligosaccharides bound by the endothelial-leukocyte adhesion molecule E-selectin. Dependence of the carbohydrate binding activity on E-selectin density, J Biol Chem, 267, 13661, 10.1016/S0021-9258(18)42264-8

Larsen, 1992, P-selectin and E-selectin. Distinct but overlapping leukocyte ligand specificities, J Biol Chem, 267, 11104, 10.1016/S0021-9258(19)49881-5

10.1083/jcb.118.2.445

Paavonen, 1992, Selective expression of sialyl-Lewis X and Lewis A epitopes, putative ligands for L-selectin, on peripheral lymph-node high endothelial venules, Am J Pathol, 141, 1259

10.1007/BF00269091

10.1073/pnas.91.16.7390

Tedder, 1995, The selectins: Vascular adhesion molecules, FASEB J, 9, 866, 10.1096/fasebj.9.10.7542213

10.1023/A:1018532409041

10.1172/JCI119142

Furie, 2001, A journey with platelet P-selectin: The molecular basis of granule secretion, signalling and cell adhesion, Thromb Haemost, 86, 214, 10.1055/s-0037-1616219

10.1055/s-2002-20564

10.1111/j.1749-6632.2011.06421.x

10.1189/jlb.3RI0116-021R

Torres, 1984, Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes evidence for O-linked GlcNAc, J Biol Chem, 259, 3308, 10.1016/S0021-9258(17)43295-9

Holt, 1986, The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc, J Biol Chem, 261, 8049, 10.1016/S0021-9258(19)57510-X

Holt, 1987, Erythrocytes contain cytoplasmic glycoproteins. O-linked GlcNAc on Band 4.1, J Biol Chem, 262, 14847, 10.1016/S0021-9258(18)48100-8

10.1083/jcb.104.5.1157

10.1073/pnas.85.24.9595

10.1146/annurev.bi.58.070189.004205

Starr, 1990, Glycosylation of nuclear pore protein p62. Reticulocyte lysate catalyzes O-linked N-acetylglucosamine addition in vitro, J Biol Chem, 265, 6868, 10.1016/S0021-9258(19)39229-4

10.1073/pnas.85.8.2573

10.1016/S0959-440X(94)90167-8

Murphy, 1994, Clathrin assembly protein AP-3 is phosphorylated and glycosylated on the 50-kDa structural domain, J Biol Chem, 269, 21346, 10.1016/S0021-9258(17)31968-3

10.1074/jbc.270.32.18961

Drickamer, 1988, Two distinct classes of carbohydrate-recognition domains in animal lectins, J Biol Chem, 263, 9557, 10.1016/S0021-9258(19)81549-1

Barondes, 1994, Galectins. Structure and function of a large family of animal lectins, J Biol Chem, 269, 20807, 10.1016/S0021-9258(17)31891-4

10.1016/0092-8674(94)90498-7

Crocker, 1991, Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages, EMBO J, 10, 1661, 10.1002/j.1460-2075.1991.tb07689.x

Powell, 1993, Natural ligands of the B cell adhesion molecule CD22beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition, J Biol Chem, 268, 7019, 10.1016/S0021-9258(18)53140-9

Crocker, 1994, Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains, EMBO J, 13, 4490, 10.1002/j.1460-2075.1994.tb06771.x

10.1016/S0960-9822(00)00220-7

10.1074/jbc.270.24.14243

10.1093/glycob/8.1.0

10.1146/annurev.cellbio.9.1.237

10.1093/glycob/7.3.367

10.1007/s10719-004-5534-6

10.1038/nsmb.3053

10.1034/j.1600-065X.2001.1800107.x

10.1146/annurev.immunol.21.120601.140954

10.1073/pnas.76.12.6615

10.1073/pnas.87.4.1342

10.1016/0009-8981(84)90059-7

Jaeken, 1987, An apparent homozygous X-linked disorder with carbohydrate-deficient serum glycoproteins [letter], Lancet, 2, 1398, 10.1016/S0140-6736(87)91287-6

10.1136/adc.65.1.107

10.1007/BF01811710

Stibler, 1978, Abnormal microheterogeneity of transferrin in serum and cerebrospinal fluid in alcoholism, Acta Med Scand, 204, 49, 10.1111/j.0954-6820.1978.tb08397.x

Yamashita, 1993, Electrospray ionization-mass spectrometric analysis of serum transferrin isoforms in patients with carbohydrate-deficient glycoprotein syndrome, J Biochem (Tokyo), 114, 766, 10.1093/oxfordjournals.jbchem.a124253

Yamashita, 1993, Sugar chains of serum transferrin from patients with carbohydrate deficient glycoprotein syndrome. Evidence of asparagine-N-linked oligosaccharide transfer deficiency, J Biol Chem, 268, 5783, 10.1016/S0021-9258(18)53387-1

10.1136/adc.71.2.123

10.1172/JCI117540

Charuk, 1995, Carbohydrate-deficient glycoprotein syndrome type II--An autosomal recessive N-acetylglucosaminyltransferase II deficiency different from typical hereditary erythroblastic multinuclearity, with a positive acidified-serum lysis test (HEMPAS), Eur J Biochem, 230, 797, 10.1111/j.1432-1033.1995.0797h.x

10.1093/glycob/5.5.503

Marquardt, 1995, Carbohydrate-deficient glycoprotein syndrome (CDGS)—Glycosylation, folding and intracellular transport of newly synthesized glycoproteins, Eur J Cell Biol, 66, 268

Tan, 1996, Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development, Am J Hum Genet, 59, 810

10.1136/jmg.37.11.875

10.1002/1531-8249(200006)47:6<776::AID-ANA10>3.0.CO;2-5

10.1172/JCI8691

10.1172/JCI7302

Matthijs, 2000, Congenital disorders of glycosylation, Trends Biochem Sci, 25, 428, 10.1016/S0968-0004(00)01629-7

10.1172/JCI9157

10.1203/01.PDR.0000031921.02259.35

10.1093/glycob/12.4.57R

10.1016/S0006-291X(03)00924-0

Marquardt, 2003, Congenital disorders of glycosylation: Review of their molecular bases, clinical presentations and specific therapies, Eur J Pediatr, 162, 359, 10.1007/s00431-002-1136-0

10.1097/01.mop.0000133636.56790.4a

10.1212/01.WNL.0000115386.28769.65

10.1016/j.sbi.2005.08.010

10.1016/j.spen.2005.10.003

10.1038/sj.ejhg.5201359

10.1146/annurev.genom.8.080706.092327

10.1002/humu.21126

Hennet, 2009, From glycosylation disorders back to glycosylation: What have we learned, Biochim Biophys Acta, 1792, 921, 10.1016/j.bbadis.2008.10.006

10.1016/j.bbadis.2008.11.002

10.1111/j.1749-6632.2010.05840.x

10.1093/glycob/cwq179

10.1016/j.bbagen.2012.02.001

10.1038/ng.2252

10.1074/jbc.R112.429274

10.1016/j.ajhg.2013.10.024

10.1007/s10545-014-9720-9

10.1093/jb/mvu066

10.1146/annurev-neuro-071714-034019

10.1093/glycob/cwv024

10.1002/ajmg.a.36889

10.1016/j.tibs.2015.03.002

10.1016/j.gene.2015.11.021

10.1172/JCI118570

10.1172/JCI2350

Marquardt, 1999, Correction of leukocyte adhesion deficiency type II with oral fucose, Blood, 94, 3976, 10.1182/blood.V94.12.3976

10.1093/glycob/10.8.829

10.1182/blood.V97.1.330

10.1038/ng.3578

10.1056/NEJMoa1515792

Lencz, 2013, Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder, Nat Commun, 4, 2739, 10.1038/ncomms3739

10.1038/sj.mp.4001895

Lee, 2010, Genome-wide association study of bipolar I disorder in the Han Chinese population, Mol Psychiatry, 16, 548, 10.1038/mp.2010.43

10.1371/journal.pone.0038172

10.1136/gutjnl-2014-306930

10.2337/db12-1077

10.1016/0092-8674(91)90408-Q

10.1073/pnas.91.2.728

Metzler, 1994, Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development, EMBO J, 13, 2056, 10.1002/j.1460-2075.1994.tb06480.x

10.1074/jbc.270.37.21437

10.1016/S0092-8674(00)80137-3

10.1093/emboj/16.8.1850

10.1104/pp.102.4.1109

10.1042/BJ20041686

10.1074/jbc.M512769200

10.1073/pnas.0635898100

10.1093/hmg/ddv041

10.1038/ng1460

10.1093/hmg/ddt434

10.1073/pnas.93.20.10662

10.1093/glycob/7.8.1111

10.1074/jbc.273.31.19634

10.1074/jbc.274.53.37637

10.1073/pnas.072211699

10.1073/pnas.96.13.7532

10.1074/jbc.C100395200

10.1073/pnas.96.16.9142

10.1093/glycob/6.7.701

10.1093/glycob/cwr182

10.1126/science.1242528

10.1073/pnas.1321524111

10.1006/dbio.2000.9798

10.1172/JCI200113561

10.1023/A:1025377206600

10.1038/nature05817

10.1016/j.matbio.2014.01.001

Mizumoto, 2014, Human genetic disorders and knockout mice deficient in glycosaminoglycan, Biomed Res Int, 2014, 495764, 10.1155/2014/495764

10.1242/dev.098178

10.1172/JCI118634

10.1073/pnas.94.14.7400

10.1073/pnas.100471497

10.1016/0092-8674(93)90250-T

10.1038/nm1410

10.1105/tpc.11.12.2303

10.1073/pnas.93.21.11919

10.1046/j.1365-2958.2003.03425.x

10.1128/JB.183.7.2273-2279.2001

10.1128/AAC.46.9.3001-3012.2002

10.1146/annurev-arplant-050213-040240

10.1093/glycob/cwv005

10.1146/annurev.arplant.55.031903.141750

10.1093/mp/ssq063

10.1016/j.sbi.2011.08.006

10.1016/j.mib.2012.04.005

10.1146/annurev-arplant-042811-105534

10.1016/B978-0-12-407677-8.00002-6

10.1007/s00425-013-1921-1

Burton, 2014, Evolution and development of cell walls in cereal grains, Front Plant Sci, 5, 456, 10.3389/fpls.2014.00456

10.1074/jbc.M202684200

10.1074/jbc.M201807200

10.1038/nrgastro.2013.35

10.1016/B978-0-12-407697-6.00004-0

10.1111/imr.12182

10.1084/jem.20061929

10.1073/pnas.0914004107

Ju, 2014, The Cosmc connection to the Tn antigen in cancer, Cancer Biomark, 14, 63, 10.3233/CBM-130375

10.1038/nature12807

10.1093/oxfordjournals.jbchem.a022166

Davies, 1990, Biochemistry of fish antifreeze proteins, FASEB J, 4, 2460, 10.1096/fasebj.4.8.2185972

10.1385/CBB:39:2:133

10.1242/jeb.116905

10.1146/annurev-biochem-060815-014546

Furness, 2013, Interventions for the management of dry mouth: Non-pharmacological interventions, Cochrane Database Syst Rev, 9, CD009603

10.1016/j.archoralbio.2014.10.004

10.1007/s00455-010-9311-3

10.1023/A:1025369004783

Hascall V , Esko JD . 2009. Hyaluronan. In: Varki A , Cummings RD , Esko JD , Freeze HH , Stanley P , Bertozzi CR , Hart GW , Etzler ME , editors. Essentials of Glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. p. 219–228.

10.1093/glycob/cww033

10.1002/elps.1150170218

10.3810/pgm.2013.01.2618

10.1097/ICO.0000000000000213

10.1371/journal.pone.0157982

10.1016/0014-4894(88)90109-9

10.1126/science.aaf7419

Kerjaschki, 1985, Reduced sialylation of podocalyxin—the major sialoprotein of the rat kidney glomerulus—in aminonucleoside nephrosis, Am J Pathol, 118, 343

Sawada, 1986, Epithelial polyanion (podocalyxin) is found on the sides but not the soles of the foot processes of the glomerular epithelium, Am J Pathol, 125, 309

10.1073/pnas.88.12.5398

10.1371/journal.pone.0029873

10.1681/ASN.2011090947

Parthasarathy, 1984, Isolation and characterization of the heparan sulfate proteoglycan of the bovine glomerular basement membrane, J Biol Chem, 259, 12749, 10.1016/S0021-9258(18)90809-4

10.1084/jem.163.5.1064

10.2337/diab.36.3.374

Stow, 1989, Basement membrane heparan sulfate proteoglycan is the main proteoglycan synthesized by glomerular epithelial cells in culture, Am J Pathol, 135, 637

10.1038/ki.1993.67

10.1097/MNH.0b013e32830464de

Gelberg, 1996, In vivo enzymatic removal of alpha2->6-linked sialic acid from the glomerular filtration barrier results in podocyte charge alteration and glomerular injury, Lab Invest, 74, 907

Groffen, 1997, Evidence for the existence of multiple heparan sulfate proteoglycans in the human glomerular basement membrane and mesangial matrix, Eur J Biochem, 247, 175, 10.1111/j.1432-1033.1997.00175.x

10.1097/01.ASN.0000142426.55612.6D

10.1097/01.ASN.0000103229.25389.40

10.1016/j.lab.2003.10.012

10.1172/JCI32482

10.1074/jbc.M114.606517

10.1016/j.cub.2014.11.049

10.1016/j.semcdb.2015.01.014

10.1093/glycob/cwj099

Gibson, 1979, The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures, J Biol Chem, 254, 3600, 10.1016/S0021-9258(18)50804-8

10.1073/pnas.76.12.6430

10.1126/science.1198461

10.1016/j.biocel.2012.12.018

10.1016/j.cbpa.2014.09.029

10.1016/j.sbi.2015.04.005

10.1126/science.1245627

10.1097/COH.0000000000000153

10.1126/science.1245625

10.1093/glycob/4.4.485

10.1021/bi9621472

10.1073/pnas.1310657110

10.1038/nature10696

10.1126/science.1213256

10.1016/j.cell.2014.09.009

Loomes, 1999, Functional protective role for mucin glycosylated repetitive domains, Eur J Biochem, 266, 105, 10.1046/j.1432-1327.1999.00824.x

10.1172/JCI200318882

10.1158/0008-5472.CAN-05-3851

10.1128/IAI.01370-12

10.1016/j.bbagen.2012.09.014

10.1073/pnas.1322264111

10.1016/S0014-4827(77)80045-1

Bremer, 1986, Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor, J Biol Chem, 261, 2434, 10.1016/S0021-9258(17)35954-9

Zhou, 1994, GM3 directly inhibits tyrosine phosphorylation and De-N-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor–receptor interaction, J Biol Chem, 269, 1959, 10.1016/S0021-9258(17)42121-1

10.1093/glycob/6.4.399

10.1074/jbc.M308818200

10.1073/pnas.0609281103

10.1073/pnas.1105666108

10.1074/jbc.M103705200

10.1093/glycob/cwh135

10.1126/science.1646484

10.1016/0092-8674(91)90512-W

10.1073/pnas.0507375102

10.1074/jbc.M510893200

10.1073/pnas.1107385108

10.1073/pnas.1507329112

10.1016/S0092-8674(02)01114-5

10.1073/pnas.0831126100

10.1016/j.cell.2007.12.016

10.1242/dev.060020

10.1016/S0070-2153(10)92004-8

10.1016/j.bbrc.2014.05.115

10.1126/science.1261093

10.1016/0092-8674(92)90189-J

10.1038/29563

10.1074/jbc.M102667200

10.1083/jcb.200507116

10.1126/science.3175663

10.1002/jcp.1041500313

10.1182/blood-2009-06-227041

10.1038/nature13535

10.1073/pnas.0608036103

10.1016/j.mcn.2007.02.011

10.1002/dneu.20649

10.1038/nrn2285

10.1523/JNEUROSCI.4382-09.2010

10.1371/journal.pone.0012003

10.1093/glycob/cwr113

McCall, 2012, Depletion of polysialic acid from neural cell adhesion molecule (PSA-NCAM) increases CA3 dendritic arborization and increases vulnerability to excitotoxicity, Exp Neurol, 241C, 5

Hildebrandt, 2015, Polysialic acid in brain development and synaptic plasticity, Top Curr Chem, 366, 55, 10.1007/128_2013_446

10.1016/j.bpj.2013.05.017

Moscatelli, 1992, Basic fibroblast growth factor (bFGF) dissociates rapidly from heparan sulfates but slowly from receptors. Implications for mechanisms of bFGF release from pericellular matrix, J Biol Chem, 267, 25803, 10.1016/S0021-9258(18)35681-3

10.1074/jbc.273.13.7303

10.1093/glycob/cwr020

10.1074/jbc.M111.276618

10.1016/j.bpj.2013.09.060

10.1093/glycob/cwu120

10.1074/jbc.270.25.15315

Alonso, 1995, A new look at the biogenesis of glycogen, FASEB J, 9, 1126, 10.1096/fasebj.9.12.7672505

10.1093/glycob/7.4.571

10.1073/pnas.1402926111

10.1016/j.mam.2015.08.004

10.1016/j.bbacli.2016.02.001

10.1016/j.carres.2013.01.020

10.1126/science.1090497

10.1016/j.ydbio.2005.05.032

10.1007/978-1-4939-1154-7_5

10.1016/j.semcdb.2015.10.004

10.1038/nrm1702

10.1016/j.matbio.2013.08.004

10.1369/0022155412464376

10.1177/0954411912470239

10.1038/nrrheum.2012.178

Melrose, 2016, The cartilage extracellular matrix as a transient developmental scaffold for growth plate maturation, Matrix Biol, 52–54, 363, 10.1016/j.matbio.2016.01.008

10.1126/science.280.5361.295

10.1023/A:1010451210773

10.1038/nrmicro2415

10.1016/j.mib.2013.04.007

10.1074/jbc.R115.707547

Cobey S , Wilson P , Matsen FA . 2015. The evolution within us. Philos Trans R Soc Lond B Biol Sci. 370, doi:10.1098/rstb.2014.0235.

Hoogeboom, 2016, Molecular mechanisms of B cell antigen gathering and endocytosis, Curr Top Microbiol Immunol, 393, 45

Brazin, 2015, Structural features of the αβTCR mechanotransduction apparatus that promote pMHC siscrimination, Front Immunol, 6, 441, 10.3389/fimmu.2015.00441

10.1084/jem.180.2.739

10.1002/eji.1830260307

Galli-Stampino, 1997, T-cell recognition of tumor-associated carbohydrates: The nature of the glycan moiety plays a decisive role in determining glycopeptide immunogenicity, Cancer Res, 57, 3214

10.3109/07853890109002094

10.1023/A:1022537031617

10.1073/pnas.0909696106

10.1073/pnas.1108754108

10.1038/nature10373

10.1046/j.1365-2958.2003.03780.x

10.1111/j.1365-2958.2006.05551.x

Stanley P , Schachter H , Taniguchi N . 2009. N-Glycans. In: Varki A , Cummings RD , Esko JD , Freeze HH , Stanley P , Bertozzi CR , Hart GW , Etzler ME editors. Essentials of Glycobiology Cold Spring Harbor (NY), Cold Spring Harbor Laboratory Press. p. 101–114.

10.1038/35055582

10.1126/science.2953071

10.1023/A:1018592627696

10.1038/sj.onc.1202124

10.1038/73163

Guo, 2002, Aberrant N-glycosylation of beta1 integrin causes reduced alpha5beta 1 integrin clustering and stimulates cell migration, Cancer Res, 62, 6837

10.1093/glycob/cwn071

10.1126/science.1102109

10.1016/j.cell.2007.01.049

10.1038/ni.3007

10.1016/j.cell.2009.12.008

10.1016/j.cell.2005.09.041

10.1038/nm.2414

10.1158/0008-5472.CAN-09-2719

10.1073/pnas.92.19.8754

10.1074/jbc.271.23.13811

Bhattacharyya, 1989, Formation of highly ordered cross-linked lattices between asparagine-linked oligosaccharides and lectins observed by electron microscopy, J Biol Chem, 264, 11543, 10.1016/S0021-9258(18)80095-3

10.1016/S0959-440X(02)00364-0

10.1111/j.1600-0854.2009.00981.x

10.1016/j.ceb.2011.05.001

10.1073/pnas.0803223105

10.1074/jbc.R110.191429

10.1091/mbc.E12-04-0329

10.1158/2159-8290.CD-13-0287

Suzuki, 2015, Sialylation by β-galactoside α-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma, Int J Oncol, 46, 973, 10.3892/ijo.2015.2818

10.1016/0968-0004(85)90112-4

10.1126/science.3589663

10.1016/S0076-6879(10)80003-5

10.1074/jbc.M205131200

10.1016/j.tcb.2007.02.006

10.3389/fonc.2013.00331

10.1139/o72-127

Takeuchi, 1988, Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells, J Biol Chem, 263, 3657, 10.1016/S0021-9258(18)68975-6

10.1073/pnas.86.20.7819

Fukuda, 1990, Structure and role of carbohydrate in human erythropoietin, Adv Exp Med Biol, 271, 53, 10.1007/978-1-4613-0623-8_7

10.1093/glycob/1.4.337

Yamaguchi, 1991, Effects of site-directed removal of N-glycosylation sites in human erythropoietin on its production and biological properties, J Biol Chem, 266, 20434, 10.1016/S0021-9258(18)54942-5

Misaizu, 1995, Role of antennary structure of N-linked sugar chains in renal handling of recombinant human erythropoietin, Blood, 86, 4097, 10.1182/blood.V86.11.4097.bloodjournal86114097

10.1046/j.1365-2141.2003.04307.x

10.1002/jps.20319

10.1016/j.ab.2008.08.027

10.1007/s00228-009-0780-y

10.1007/s12185-010-0496-x

Cebon, 1990, Granulocyte-macrophage colony stimulating factor from human lymphocytes. The effect of glycosylation on receptor binding and biological activity, J Biol Chem, 265, 4483, 10.1016/S0021-9258(19)39589-4

10.1016/0003-9861(92)90405-L

Niu, 2000, High-affinity binding to the GM-CSF receptor requires intact N-glycosylation sites in the extracellular domain of the β subunit, Blood, 95, 3357, 10.1182/blood.V95.11.3357

Forno, 2004, N- and O-linked carbohydrates and glycosylation site occupancy in recombinant human granulocyte-macrophage colony-stimulating factor secreted by a Chinese hamster ovary cell line, Eur J Biochem, 271, 907, 10.1111/j.1432-1033.2004.03993.x

10.1002/elps.200500891

10.1002/dta.1494

10.1038/nature05815

10.1146/annurev-biochem-060608-102511

Hart, 2014, Three decades of research on O-GlcNAcylation—A major nutrient sensor that regulates signaling, transcription and cellular metabolism, Front Endocrinol (Lausanne), 5, 183, 10.3389/fendo.2014.00183

10.1074/jbc.R114.595439

10.1083/jcb.201501101

10.1097/MCO.0000000000000188

10.1016/j.cbpa.2016.06.005

10.1146/annurev-biochem-060713-035344

Teng-umnuay, 1999, Identification of a UDP-GlcNAc:Skp1-hydroxyproline GlcNAc-transferase in the cytoplasm of Dictyostelium, J Biol Chem, 274, 29144, 10.1074/jbc.274.51.36392

10.1016/j.bbagen.2009.11.006

10.1074/jbc.M112.355446

10.1074/jbc.M111.314021

10.1074/mcp.M114.044560

Winkelhake, 1980, Effects of pH treatments and deglycosylation of rabbit immunoglobulin G on the binding of C1q, J Biol Chem, 255, 2822, 10.1016/S0021-9258(19)85813-1

Heyman, 1985, Carbohydrate chains on IgG2b: A requirement for efficient feedback immunosuppression, J Immunol, 134, 4018, 10.4049/jimmunol.134.6.4018

10.1093/glycob/3.1.15

Newkirk, 1993, Binding of human monoclonal IgG rheumatoid factors to Fc is influenced by carbohydrate, J Rheumatol, 20, 776

10.1038/316452a0

10.1073/pnas.91.13.6123

10.1038/nm0395-237

10.1074/jbc.M202069200

10.1016/j.jmb.2004.01.007

10.1007/s10616-007-9103-2

10.1182/blood-2008-03-144600

10.1182/blood-2013-09-527978

10.1016/j.coi.2008.06.007

10.1093/glycob/cwv065

10.1084/jem.20061788

10.1073/pnas.0702936104

10.1016/j.molimm.2006.09.005

10.1073/pnas.0810163105

10.1126/science.1154315

10.1073/pnas.0900016106

10.1038/nature10134

10.1371/journal.pone.0021246

10.1021/bi300319q

10.1056/NEJMra1009433

10.1074/jbc.M112.345710

10.1371/journal.pone.0037243

10.1002/eji.201242710

10.1371/journal.pone.0081448

10.1016/j.jmb.2013.02.006

10.1016/j.jmb.2014.07.006

10.1097/ACI.0000000000000116

Böhm, 2014, Sweet and sour: The role of glycosylation for the anti-inflammatory activity of immunoglobulin G, Curr Top Microbiol Immunol, 382, 393

10.4049/jimmunol.1301611

10.1111/cei.12530

10.1182/blood-2014-05-576835

10.1007/s10875-014-0018-3

10.1002/eji.201344230

10.1038/nri3401-c1

10.1371/journal.pone.0107772

10.1038/nri3401-c1

10.1038/nrneurol.2014.253

10.1172/JCI82695

Calabrese, 2008, Hormesis and medicine, Br J Clin Pharmacol, 66, 594, 10.1111/j.1365-2125.2008.03243.x

10.1016/j.yrtph.2011.06.003

10.4161/onci.29312

10.1073/pnas.1209067111

10.1097/QAD.0000000000000444

10.1038/nchembio.511

10.1016/j.str.2014.08.002

10.1073/pnas.1307864110

10.1084/jem.20142182

10.1038/nrm3334

Ofek, 1990, Adhesins as lectins: Specificity and role in infection, Curr Top Microbiol Immunol, 151, 91

10.1016/S0140-6736(84)91816-6

10.1126/science.8018146

10.1126/science.279.5349.373

10.1074/jbc.M201113200

10.1093/glycob/cwi049

10.1371/journal.ppat.0040002

10.1093/glycob/cwp004

10.1016/j.chom.2009.05.011

10.1016/j.bbagen.2014.04.021

10.1021/jm300192x

10.1083/jcb.116.4.901

10.1126/science.8009226

10.1073/pnas.0730883100

10.1016/j.pt.2006.02.007

10.1172/JCI32138

10.1073/pnas.1104050108

10.1371/journal.pone.0056326

10.1074/jbc.M113.450643

10.1016/0166-6851(92)90199-T

10.1073/pnas.0503819102

10.1038/ncomms11187

10.1182/blood-2002-07-2016

10.1111/j.1365-2958.2008.06184.x

10.1371/journal.ppat.1000968

10.1073/pnas.1008151107

10.1093/infdis/jiv207

Paulson, 1979, Restoration of specific myxovirus receptors to asialoerythrocytes by incorporation of sialic acid with pure sialyltransferases, J Biol Chem, 254, 2120, 10.1016/S0021-9258(17)37774-8

10.1016/0042-6822(83)90150-2

10.1006/viro.1996.8323

10.1073/pnas.201401198

10.1016/j.virol.2005.02.003

10.1128/JVI.79.17.11533-11536.2005

10.1126/science.1124513

10.1073/pnas.0801259105

10.1038/nbt1375

10.1371/journal.ppat.1003223

10.1126/science.1243761

10.1074/jbc.M309813200

Baum, 1990, Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity, Acta Histochem (Jena), 89, 35

10.1016/0264-410X(95)00004-K

10.1038/ncomms6750

Regl, 1999, The hemagglutinin-esterase of mouse hepatitis virus strain S is a sialate-4-O-acetylesterase, J Virol, 73, 4721, 10.1128/JVI.73.6.4721-4727.1999

10.1099/0022-1317-83-2-395

10.1128/JVI.00566-10

10.1007/978-1-4684-5823-7_17

10.1099/0022-1317-73-4-901

10.1007/s10719-006-5437-9

10.1016/j.celrep.2015.05.044

10.1371/journal.ppat.1005411

10.1371/journal.ppat.1002492

10.1073/pnas.1519881113

10.1073/pnas.72.7.2520

Baenziger, 1979, Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides, J Biol Chem, 254, 9795, 10.1016/S0021-9258(19)83586-X

10.1021/bi00227a011

10.1093/infdis/151.5.775

Kiarash, 1994, Glycosphingolipid receptor function is modified by fatty acid content. Verotoxin 1 and verotoxin 2c preferentially recognize different globotriaosyl ceramide fatty acid homologues, J Biol Chem, 269, 11138, 10.1016/S0021-9258(19)78102-2

10.1194/jlr.M063040

10.1038/35001095

10.1093/glycob/11.7.605

10.1016/j.cell.2014.10.057

10.1038/nature07428

10.7554/eLife.09545

10.1093/glycob/cwu040

10.1126/science.1209791

10.1038/nm.2103

10.1007/978-1-4939-1396-1_27

10.1128/IAI.01299-15

10.1128/JVI.02435-14

10.1111/sji.12070

10.1016/S0145-305X(99)00019-1

10.1126/science.1109051

10.1038/nrmicro2746

10.1093/glycob/cwt040

10.1146/annurev-micro-092412-155618

10.1007/978-3-319-21317-0

10.1128/JVI.78.22.12665-12667.2004

10.1186/1743-422X-10-321

10.1128/JVI.79.2.1113-1124.2005

10.1016/0042-6822(74)90080-4

10.1038/363418a0

10.1056/NEJM199709253371302

10.1001/jama.282.13.1240

10.1056/NEJM199910283411802

10.1074/jbc.M404965200

Takahashi, 1997, A specific cell surface antigen of Streptococcus gordonii is associated with bacterial hemagglutination and adhesion to alpha2-3-linked sialic acid-containing receptors, Infect Immun, 65, 5042, 10.1128/IAI.65.12.5042-5051.1997

10.1111/j.1365-2141.2005.05421.x

10.1128/IAI.74.3.1933-1940.2006

Bensing BA , Khedri Z , Deng L , Yu H , Prakobphol A , Fisher SJ , Chen X , Iverson TM , Varki A , Sullam PM . 2016. Novel aspects of sialoglycan recognition by the Siglec-like domains of streptococcal SRR glycoproteins. Glycobiology. doi:10.1093/glycob/cww042.

10.1371/journal.pone.0143898

Sullam, 1987, Mechanisms of platelet aggregation by viridans group streptococci, Infect Immun, 55, 1743, 10.1128/IAI.55.8.1743-1750.1987

10.1111/j.1348-0421.2005.tb03659.x

10.1111/j.1574-695X.2006.00161.x

10.1016/j.micpath.2008.06.004

10.1371/journal.ppat.1002112

10.1371/journal.ppat.1004540

10.1086/339883

10.1128/JVI.79.11.6714-6722.2005

10.1073/pnas.0803275105

10.1016/j.coviro.2014.06.001

10.1093/glycob/cws074

10.1016/j.coviro.2014.06.005

10.1093/glycob/cwv025

10.1016/S0092-8674(00)80412-2

10.1146/annurev.immunol.20.083001.084359

10.1182/blood-2008-07-019307

10.1016/j.cub.2011.05.039

10.1016/j.coi.2007.09.002

10.1146/annurev.immunol.021908.132715

10.1146/annurev-immunol-031210-101405

10.1016/j.immuni.2014.12.010

10.1016/S0959-440X(00)00259-1

10.1002/eji.200324641

10.1016/j.cell.2010.01.022

10.1016/j.immuni.2012.03.004

10.1016/S0076-6879(10)78016-2

Mahla, 2013, Sweeten PAMPs: Role of sugar complexed PAMPs in innate immunity and vaccine biology, Front Immunol, 4, 248, 10.3389/fimmu.2013.00248

10.1093/glycob/cwp201

10.1111/j.1749-6632.2012.06618.x

10.1093/glycob/cwp140

10.1146/annurev.immunol.22.012703.104558

10.1016/j.coi.2004.12.001

10.1093/intimm/dxh246

10.1056/NEJMoa074943

10.1038/nbt.1651

10.1126/science.278.5343.1626

Burdin, 1998, Selective ability of mouse CD1 to present glycolipids: Alpha-galactosylceramide specifically stimulates V alpha 14+ NK T lymphocytes, J Immunol, 161, 3271, 10.4049/jimmunol.161.7.3271

10.1126/science.1103440

10.1111/j.1749-6632.2011.06435.x

10.1111/tan.12689

Zajonc, 2015, Recognition of microbial glycolipids by natural killer T cells, Front Immunol, 6, 400, 10.3389/fimmu.2015.00400

10.1128/CMR.00024-15

10.1126/science.1198545

10.1016/j.femsre.2004.05.002

10.1073/pnas.93.20.10584

10.1128/JVI.00801-12

10.1111/mmi.12849

10.7554/eLife.13152

10.1146/annurev-marine-120709-142805

10.1016/j.sbi.2015.07.006

10.3109/1040841X.2012.723675

10.1016/S0378-1097(04)00041-2

Simpson DJ , Sacher JC , Szymanski CM . 2016. Development of an assay for the identification of receptor binding proteins from bacteriophages. Viruses. 8, doi:10.3390/v8010017.

Li, 1978, The synthesis of complex-type oligosaccharides. I. Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein, J Biol Chem, 253, 7762, 10.1016/S0021-9258(17)34435-6

Welply, 1985, Active site-directed photoaffinity labeling and partial characterization of oligosaccharyltransferase, J Biol Chem, 260, 6459, 10.1016/S0021-9258(18)88994-3

Bosch, 1988, Characterization of dolichol diphosphate oligosaccharide: Protein oligosaccharyltransferase and glycoprotein-processing glucosidases occurring in trypanosomatid protozoa, J Biol Chem, 263, 17360, 10.1016/S0021-9258(19)77843-0

10.1021/bi00232a002

Silberstein, 1996, Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase, FASEB J, 10, 849, 10.1096/fasebj.10.8.8666161

10.1093/glycob/3.3.193

10.1016/j.semcdb.2014.11.008

Parodi, 1983, Transient glucosylation of protein-bound Man9GlcNAc2, Man8GlcNAc2, and Man7GlcNAc2 in calf thyroid cells. A possible recognition signal in the processing of glycoproteins, J Biol Chem, 258, 8260, 10.1016/S0021-9258(20)82057-2

Parodi, 1984, Evidence that transient glucosylation of protein-linked Man9GlcNAc2, Man8GlcNAc2, and Man7GlcNAc2 occurs in rat liver and Phaseolus vulgaris cells, J Biol Chem, 259, 6351, 10.1016/S0021-9258(20)82148-6

10.1083/jcb.126.1.41

10.1073/pnas.91.3.913

Kearse, 1994, Persistence of glucose residues on core oligosaccharides prevents association of TCR alpha and TCR beta proteins with calnexin and results specifically in accelerated degradation of nascent TCR alpha proteins within the endoplasmic reticulum, EMBO J, 13, 3678, 10.1002/j.1460-2075.1994.tb06677.x

10.1016/0092-8674(95)90395-X

10.1093/glycob/10.8.815

10.1093/emboj/16.14.4302

10.1083/jcb.142.5.1223

10.1093/embo-reports/kve089

10.1016/j.molcel.2005.05.029

10.1016/j.molcel.2005.09.027

10.1083/jcb.200411136

10.1038/ncb1445

10.1016/j.molcel.2008.11.017

10.1091/mbc.E08-04-0354

10.1083/jcb.200809198

10.1146/annurev.biochem.73.011303.073752

10.1007/s00018-004-4037-8

10.1093/glycob/cwn003

10.1016/j.semcdb.2010.03.006

10.1016/j.febslet.2015.07.021

10.3390/molecules20022475

10.1038/ncb1689

10.1093/glycob/cwq013

10.1016/j.molcel.2011.04.027

10.1111/febs.12157

10.1096/fj.04-2397fje

10.1016/j.semcdb.2014.11.009

10.1038/nchembio.1774

10.1091/mbc.7.3.483

10.1038/ng1153

10.1182/blood-2014-02-554501

10.1182/blood-2011-05-352815

10.1016/S0076-6879(03)01077-2

10.1074/jbc.M211199200

10.1093/glycob/cwm074

10.1074/jbc.M709384200

10.1111/j.1600-0854.2010.01078.x

10.1074/jbc.M112.413906

10.1038/nm1760

10.1073/pnas.1313905110

10.1093/glycob/8.6.579

10.1016/S0981-9428(00)00163-7

10.1016/S0031-9422(01)00113-3

10.1094/MPMI-01-11-0019

10.1094/MPMI-08-10-0181

10.1146/annurev-genet-110410-132549

10.1016/j.tplants.2013.06.001

10.1104/pp.112.206110

10.1126/science.1242736

10.1074/jbc.M310859200

10.1152/physrev.00052.2009

10.1172/JCI67947

Hauselmann, 2014, Altered tumor-cell glycosylation promotes metastasis, Front Oncol, 4, 28, 10.3389/fonc.2014.00028

10.1517/14728222.2013.841140

10.1093/cvr/cvv154

10.1093/glycob/cww024

Dykstra B , Lee J , Mortensen LJ , Yu H , Wu ZL , Lin CP , Rossi DJ , Sackstein R . 2016. Glycoengineering of E-selectin ligands by intracellular versus extracellular fucosylation differentially affects osteotropism of human mesenchymal stem cells. Stem Cells, doi:10.1002/stem.2435.

10.1093/glycob/cww026

10.1182/blood-2014-06-583351

10.1016/j.jacc.2015.10.071

10.1182/blood.V99.7.2297

10.1182/blood-2002-02-0626

10.1182/blood-2004-02-0713

10.1080/10739680490437559

10.1182/blood-2009-12-260513

10.1371/journal.pone.0101301

10.1021/cn900029p

10.1152/physrev.00033.2013

Schwardt, 2015, SIGLEC-4 (MAG) antagonists: From the natural carbohydrate epitope to glycomimetics, Top Curr Chem, 367, 151, 10.1007/128_2013_498

10.1093/glycob/cwh107

10.1096/fj.15-270983

10.1074/jbc.274.43.30747

10.1074/jbc.M506703200

10.1074/jbc.M806430200

10.1159/000016804

10.1007/s000180300025

10.1126/science.1207438

10.1016/j.bbrc.2014.06.051

10.1002/mrd.22500

10.1073/pnas.1102302108

10.1126/science.1079546

10.1093/glycob/cwm065

10.1093/glycob/cwr156

10.1073/pnas.1515464112

Jankovic, 2008, Glycoforms of CA125 antigen as a possible cancer marker, Cancer Biomark, 4, 35, 10.3233/CBM-2008-4104

10.1186/1757-2215-2-13

10.1097/IGC.0b013e3182473292

10.1007/978-94-017-7215-0_15

10.1016/S0140-6736(15)01224-6

10.1371/journal.pone.0158285

10.1172/JCI29154

10.1097/MOL.0b013e328338cabc

10.1172/JCI42213

10.1007/s00011-014-0743-3

10.1074/jbc.M109.081513

10.1038/nrmicro2711

10.1073/pnas.0609848104

10.1093/glycob/cwr087

10.1182/blood-2008-11-187302

10.1126/science.1168988

10.1016/j.coi.2010.10.004

10.1093/glycob/cwu068

10.1038/nchembio.1696

Lewis LA , Gulati S , Burrowes E , Zheng B , Ram S , Rice PA . 2015. α-2,3-Sialyltransferase expression level impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of Neisseria gonorrhoeae to colonize the murine genital tract. MBio. 6, doi:10.1128/mBio.02465-14.

10.1016/j.imbio.2016.05.016

10.1182/blood-2015-11-680009

10.1007/s00109-015-1341-8

10.1007/s10719-011-9368-8

10.1007/128_2013_469

10.1371/journal.pone.0119298

10.1023/A:1014860030380

10.1093/glycob/11.4.261

10.1002/eji.200323717

10.1093/glycob/cwg025

Commins, 2011, The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-alpha-1,3-galactose, J Allergy Clin Immunol, 127, 1286-93.e6, 10.1016/j.jaci.2011.02.019

10.1016/j.jaci.2012.02.038

10.1111/xen.12019

10.1111/ajt.12744

10.1111/xen.12106

10.1093/glycob/cww028

Samraj, 2014, Involvement of a non-human sialic acid in human cancer, Front Oncol, 4, 33

10.1016/j.mam.2016.07.002

10.1186/s13059-015-0607-3

10.1021/bi00414a059

10.1086/513778

Prendergast, 1998, Lipopolysaccharides from Campylobacter jejuni O:41 strains associated with Guillain-Barre syndrome exhibit mimicry of GM1 ganglioside, Infect Immun, 66, 3649, 10.1128/IAI.66.8.3649-3655.1998

10.1093/brain/awf272

10.1093/glycob/cwp027

10.1128/IAI.02094-05

10.1128/IAI.01273-09

10.1128/IAI.00009-11

10.1111/1469-0691.12073

Saint-Cyr, 2016, Recent advances in screening of anti-campylobacter activity in probiotics for use in poultry, Front Microbiol, 7, 553, 10.3389/fmicb.2016.00553

10.1189/jlb.0511260

10.1093/glycob/cwv057

10.1111/j.1365-2958.2007.05890.x

10.1016/0882-4010(88)90103-9

10.1155/2013/816713

10.1111/1574-6976.12056

10.1073/pnas.88.19.8317

10.1016/S0008-6215(02)00219-7

10.1093/glycob/12.1.9R

10.1126/science.1087499

10.1016/j.cell.2004.10.009

10.1016/j.matbio.2013.10.004

10.1016/j.matbio.2013.10.009

10.1016/j.matbio.2013.12.001

10.1016/j.matbio.2013.12.009

10.1074/jbc.M607434200

10.1073/pnas.1117881109

10.1002/dvdy.20094

10.1074/jbc.M511097200

10.1002/dneu.20681

10.1093/glycob/11.3.231

10.1016/j.febslet.2006.07.058

10.1074/jbc.M111.324186

10.1074/jbc.M610797200

10.1016/j.neuroscience.2007.07.044

10.1016/j.neuroscience.2010.08.070

10.1073/pnas.070022697

10.1046/j.0953-816x.2001.01516.x

10.1093/glycob/cwn084

10.1016/S0896-6273(00)80174-9

Eckhardt, 2000, Mice deficient in the polysialyltransferase ST8SialV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity, J Neurosci, 20, 5234, 10.1523/JNEUROSCI.20-14-05234.2000

10.1523/JNEUROSCI.5806-09.2010

10.1038/367455a0

10.1002/(SICI)1097-4547(19960715)45:2<143::AID-JNR6>3.0.CO;2-A

10.1523/JNEUROSCI.0878-06.2006

10.1016/j.nlm.2006.11.007

10.1002/(SICI)1096-9861(19960506)368:3<439::AID-CNE9>3.0.CO;2-6

10.1016/S0006-8993(01)02543-4

10.1523/JNEUROSCI.4880-04.2005

10.1002/glia.22330

10.1073/pnas.92.7.2785

Arai, 2005, Association between polymorphisms in the promoter region of the sialyltransferase 8B (SIAT8B) gene and schizophrenia, Biol Psychiatry, 59, 652, 10.1016/j.biopsych.2005.08.016

10.1016/j.schres.2006.09.029

10.1093/brain/awp117

10.1074/jbc.M111.221143

10.1016/j.neulet.2012.09.032

10.1016/j.neuroscience.2006.08.069

10.1016/j.jpsychires.2011.10.011

10.1016/j.jpsychires.2012.11.013

10.1038/nn.3194

10.1002/ana.410440611

10.1097/WNR.0b013e328338616d

10.1111/j.1601-183X.2010.00635.x

10.1093/glycob/4.6.759

10.1111/j.1440-1711.2005.01366.x

10.1073/pnas.95.20.11751

10.1007/s00251-014-0795-0

10.1016/j.carres.2009.05.020

10.1073/pnas.0908196106

10.1016/S0962-8924(99)01648-7

Seko, 1991, Peptide:N-glycosidase activity found in the early embryos of Oryzias latipes (Medaka fish). The first demonstration of the occurrence of peptide:N-glycosidase in animal cells and its implication for the presence of a de-N-glycosylation system in living organisms, J Biol Chem, 266, 22110, 10.1016/S0021-9258(18)54540-3

Seino J , Fujihira H , Nakakita SI , Masahara-Negishi Y , Miyoshi E , Hirabayashi J , Suzuki T . 2016. Occurrence of free sialyl oligosaccharides related to N-glycans (sialyl FNGs) in animal sera. Glycobiology. doi:10.1093/glycob/cww048.

10.1073/pnas.170184597

10.1126/science.7687382

10.1074/jbc.270.20.12012

10.1021/acs.biochem.6b00504

10.1038/nchembio767

10.1007/978-1-61779-043-0_6

10.1146/annurev-anchem-061010-113951

10.1016/j.cbpa.2013.06.009

10.1073/pnas.75.4.1971

10.1073/pnas.75.5.2416

10.1074/jbc.M111.286633

10.1093/glycob/cwu094

10.1074/jbc.M114.563585

10.1074/jbc.M109.065854

10.1039/c3cs60097a

10.1016/0959-440X(95)80049-2

10.1021/bi961819l

10.1189/jlb.3MR0115-011R

10.1073/pnas.250484797

10.1083/jcb.153.6.1277

10.1038/227561a0

10.1172/JCI85905

10.1016/j.sbi.2003.09.001

10.1016/j.sbi.2009.05.005

10.1016/j.cell.2010.11.008

10.1021/pr1009367

10.1074/mcp.R112.026252

10.1074/mcp.E113.027904

10.1016/j.cbpa.2012.12.007

10.1016/j.chembiol.2013.12.010

Levery, 2015, Advances in mass spectrometry driven O-glycoproteomics, Biochim Biophys Acta, 1850, 33, 10.1016/j.bbagen.2014.09.026

10.1039/b800725j

10.1126/science.1169727

10.1073/pnas.0904638106

Manzi, 1994, Intramolecular self-cleavage of polysialic acid, J Biol Chem, 269, 23617, 10.1016/S0021-9258(17)31560-0

Varki, 2013, Omics: Account for the “dark matter” of biology, Nature, 497, 565, 10.1038/497565a

Glycosciences Committee on Assessing the Importance and Impact of Glycomics and Technology. 2012. Transforming Glycoscience: A Roadmap for the Future. A National Research Council Report . Washington, DC: The National Academies Press.