Biological inflammatory markers mediate the effect of preoperative pain-related behaviours on postoperative analgesics requirements
Tóm tắt
The predictive value of an individual’s attitude towards painful situations and the status of his immune system for postoperative analgesic requirements are not well understood. These may help the clinician to anticipate individual patient’s needs. Sixty patients, who underwent a laparoscopic cholecystectomy under standardised general anaesthesia, were included. The total analgesic requirements during the first 48 h were the primary endpoint (unitary dosage, UD). The individual’s attitude towards imaginary painful situations was measured with the Situational Pain Scale (SPS). The emotional status was assessed by the Hospital Anxiety and Depression Scale (HADS) and the inflammatory status by the neutrophil-to-lymphocyte ratio (NLR). Univariate analyses revealed a significant association between UD and SPS, HADS and NLR. A negative relationship between SPS and NLR (NLR = 0.820–0.180*SPS;R2 = 0.211;P < 0.001) and a positive relationship between SPS and HADS (HADS = 14.8 + 1.63*SPS; R2 = 0.159;P = 0.002) were observed. A multiple linear regression analysis showed that the contribution of NLR to the UD was the most effective. A mediation analysis showed a complete mediation of the effect of SPS on UD (R2 = 0.103;P = 0.012), by the NLR (SPS on NLR: R2 = 0.211;P = <0.001), the HADS (SPS on HADS: R2 = 0.159;P = 0.002). The variance in UD explained by the SPS was indirect and amounts to 46 % through NLR and to 34 % through HADS. In this series, preoperative pain-related attitudes (SPS) were associated with the postoperative analgesic requirements (UD) after a cholecystectomy. Eighty per cent of this effect was mediated by the HADS and the NLR.
Tài liệu tham khảo
Kalkman CJ, Visser K, Moen J, Bonsel GJ, Grobbee DE, Moons KGM. Preoperative prediction of severe postoperative pain. Pain. 2003;105:415–23.
Janssen KJM, Kalkman CJ, Grobbee DE, Bonsel GJ, Moons KGM, Vergouwe Y. The risk of severe postoperative pain: modification and validation of a clinical prediction rule. Anesth Analg. 2008;107:1330–9.
Yang JC, Clark WC, Tsui SL, Ng KF, Clark SB. Preoperative Multidimensional Affect and Pain Survey (MAPS) scores predict postcolectomy analgesia requirement. Clin J Pain. 2000;16:314–20.
Andrich D. A rating formulation for ordered response categories. Psychometrika. 1978;43:561–73.
Azab B, Zaher M, Weiserbs KF, Torbey E, Lacossiere K, Gaddam S, et al. Usefulness of neutrophil to lymphocyte ratio in predicting short- and long-term mortality after non-ST-elevation myocardial infarction. Am J Cardiol. 2010;106:470–6.
Azab B, Chainani V, Shah N, McGinn JT. Neutrophil-Lymphocyte Ratio as a Predictor of Major Adverse Cardiac Events Among Diabetic Population: A 4-Year Follow-Up Study. Angiology. 2012;64(6):456–65 [Epub ahead of print].
Forget P, Machiels JP, Coulie PG, Berlière M, Poncelet A, Tombal B, et al. Neutrophil:lymphocyte ratio and intraoperative use of ketorolac or diclofenac are prognostic factors in different cohorts of patients undergoing breast, lung and kidney cancer surgery. Ann Surg Oncol. 2013;3:S650–60. In Press.
Gibson PH, Croal BL, Cuthbertson BH, Small GR, Ifezulike AI, Gibson G, et al. Preoperative neutrophil-lymphocyte ratio and outcome from coronary artery bypass grafting. Am Heart J. 2007;154:995–1002.
Proctor MJ, Morrison DS, Talwar D, Balmer SM, Fletcher CD, O'Reilly DS, et al. A comparison of inflammation-based prognostic scores in patients with cancer. A Glasgow Inflammation Outcome Study. Eur J Cancer. 2011;47:2633–41.
Jensen MP, Karoly P. Self-report scales and procedures for assessing pain in adults. In: Turk DC, Melzack R, editors. Handbook of pain assessment. New York: The Guilford Press; 1992. p. 135–52.
Fine PG, Portenoy RK. Establishing ‘best practices’ for opioid rotation: conclusions of an expert panel. J Pain Symptom Manage. 2009;38:418–24.
Knotkova H, Fine PG, Portenoy RK. Opioid rotation: the science and the limitations of equianalgesic dose table. J Pain Symptom Manage. 2009;38:426–39.
Shaheen PE, Walsh sD, Lasheen W, Davis MP, Lagman RL. Opioid equianalgesic tables: are they all equally dangerous? J Pain Symptom Manage. 2009;38:409–17.
Guilford JP. System in the relationship of affective value to frequency and intensity of auditory stimuli. Am J Psychol. 1954;67:691–5.
Decruynaere C. The measure of pain by self-report: use of Rasch analysis. Université catholique de Louvain, 2007; <http://dial.academielouvain.be/handle/boreal:5246>
Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–70.
Ravazi D, Delvaux N, Farvacques C, Robaye E. Validation of the French version of the Hospital Anxiety and Depression Scale (HADS) in a population of hospitalized cancer patients. Rev Psychol Appl. 1989;39:295–307.
Neter J, Wasserman W, Kutner MH. Applied Linear Statistical Models. 3rd ed. Boston: Irwin; 1990. p. 408–11.
DeMaris A. Regression with Social Data: Modeling Continuous and Limited Response Variables. Hoboken, NJ: John Wiley and Sons; 2004. p. 224–31.
Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods. 2008;40:879–91.
Muthén LK, Muthén BO. Mplus User’s Guide. 5th ed. Los Angeles, CA: Muthén & Muthén; 1998.
MacKinnon DP. Introduction to statistical mediation analysis. New-York: Taylor & Francis Group, LLC; 2008.
Werner MU, Mjöbo HN, Nielsen P, Rudin A. Prediction of postoperative pain, a systematic review of predictive experimental pain studies. Anesthesiology. 2010;112:1494–502.
Thornton LM, Andersen BL, Schuler TA, Carson 3rd WE. A psychological intervention reduces inflammatory markers by alleviating depressive symptoms: secondary analysis of a randomized controlled trial. Psychosom Med. 2009;71:715–24.
Manyande A, Chayen S, Priyakumar P, Smith CC, Hayes M, Higgins D, et al. Anxiety and endocrine responses to surgery: paradoxical effects of preoperative relaxation training. Psychosom Med. 1992;54(3):275–87.
Rosenberger PH, Ickovics JR, Epel E, Nadler E, Jokl P, Fulkerson JP, et al. Surgical stress-induced immune cell redistribution profiles predict short-term and long-term postsurgical recovery. A prospective study. J Bone Joint Surg Am. 2009;91:2783–94.