Biological effects of Wolbachia pipientis: Elucidation of genetic mechanisms
Tóm tắt
The intracellular alpha-proteobacteria Wolbachia pipientis infects about 40% of arthropod species from all major taxonomic groups; it also infects nematodes. Such a wide range of host species is unusual for highly specialized parasites, which include Wolbachia; it may be associated with the adaptation to the presence of germplasm in cells that exhibit minimal evolutionary variability in animals. Having type-IV bacterial secretion apparatus, Wolbachia has the ability to export proteins and ribonucleoprotein complexes to the cytoplasm of germline cells of the host organism, thus forming the basis for intervention at the earliest stages of ontogenesis. Different strains of Wolbachia induce parthenogenesis, male-killing, feminization, cytoplasmic incompatibility, and increased resistance to viruses in the hosts. All of these effects increase the reproductive success of infected females and ensure the preservation of Wolbachia in the host populations. In recent years, results from the studyof the insect-Wolbachia symbiotic systems made it possible to start developing methods of insect control and new methods of combating human diseases transmitted by insect vectors.
Tài liệu tham khảo
Augustinos, A.A., Santos-Garcia, D., Dionyssopoulou, E., et al., Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled? PLoS One, 2011, p. e28695.
Baldo, L., Bordenstein, S., Wernegreen, J.J., and Werren, J.H., Widespread recombination throughout Wolbachia genomes, Mol. Biol. Evol., 2006a, vol. 23, pp. 437–449.
Baldo, L., Hotopp, J.C., Jolley, K.A., et al., Multilocus sequence typing system for the endosymbiont Wolbachia pipientis, Appl. Environ. Microbiol., 2006b, vol. 72, pp. 7098–7110.
Baldo, L. and Werren, J.H., Revisiting Wolbachia supergroup typing based on wsp: spurious lineages and discordance with MLST, Curr. Microbiol., 2007, vol. 55, pp. 81–87.
Bandi, C., Anderson, T.J.C., Genchi, C., and Blaxter, M.L., Phylogeny of Wolbachia in filarial nematodes, Proc. R. Soc. Lond. B, 1998, vol. 265, pp. 2407–2413.
Bandi, C., Trees, A.J., and Brattig, N.W., Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases, Vet. Parasitol., 2001, vol. 98, pp. 215–238.
Bian, G., Zhou, G., Lu, P., and Xi, Z., Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector, PLoS Neglected Trop. Dis., 2013, vol. 7, no. 6, p. e2250.
Bordenstein, S.R. and Wernegreen, J.J., Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates, Mol. Biol. Evol., 2004, vol. 21, pp. 1981–1991.
Brennan, L.J., Keddie, B.A., Braig, H.R., and Harris, H.L., The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line, PLoS One, 2008, vol. 3, no. 5, p. e2083.
Brownlie, J.C., Cass, B.N., Riegler, M., et al., Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress, PLoS Pathog., 2009, no. 5, p. e1000368.
Casiraghi, M., Bordenstein, S.R., Baldo, L., et al., Phylogeny of Wolbachia pipientis based on gltA, groEL, and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree, Arch. Microbiol., 2005, vol. 151, pp. 4015–4022.
Dedeine, F., Vavre, F., Fleury, F., et al., Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 6247–6252.
Early, A.M. and Clark, A.G., Monophyly of Wolbachia pipientis genomes within Drosophila melanogaster: geographic structuring, titer variation and host effects across five populations, Mol. Ecol., 2013, vol. 22, pp. 5765–5778.
Foster, J., Ganatra, M., Kamal, I., et al., The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode, PLoS Biol., 2005, vol. 3, p. e121.
Goryacheva, I.I., Bacteria of genus Wolbachia are reproductive parasites of Arthropoda, Usp. Sovrem. Biol., 2004, vol. 124, no. 3, pp. 246–259.
Graham, R.I., Grzywacz, D., Mushobozi, W.L., and Wilson, K., Wolbachia in a major African crop pest increases susceptibility to viral disease rather than protects, Ecol. Lett., 2012, vol. 15, pp. 993–1000.
Hedges, L.M., Brownlie, J.C., O’Neill, S.L., and Johnson, K.N., Wolbachia and virus protection in insects, Science, 2008, vol. 322, p. 702.
Hilgenboecker, K., Hammerstein, P., Schlattmann, P., et al., How many species are infected with Wolbachia? A statistical analysis of current data, FEMS Microbiol. Lett., 2008, vol. 281, pp. 215–220.
Hoffmann, A.A., Clancy, D.J., and Merton, E., Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster, Genetics, 1994, vol. 136, no. 3, pp. 993–999.
Hoffmann, A.A., Hercus, M., and Dagher, H., Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in populations of Drosophila melanogaster, Genetics, 1998, vol. 148, no. 1, pp. 221–231.
Hornett, E.A., Charlat, S., Duplouy, A.M.R., et al., Evolution of male-killer suppression in a natural population, PLoS Biol., 2006, vol. 4, no. 9, p. e283.
Hosokawa, T., Koqa, R., Kikuchii, Y., et al., Wolbachia as a bacteriocyte-associated nutritional mutualist, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 769–774.
Hughes, G.L., Koga, R., Xue, P., et al., Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae, PLoS Pathog., 2011, no. 7, p. e1002043.
Hughes, G.L., Ren, X., Ramirez, J.L., et al., Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host-symbiont interaction, PLoS Pathog., 2011, no. 7, p. e1001296.
Hussain, M., Frentiu, F.D., Moreira, L.A., et al., Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 9250–9255.
Hussain, M., Lu, G., Torres, S., et al., Effect of Wolbachia on replication of west Nile virus in a mosquito cell line and adult mosquitoes, J. Virol., 2013, vol. 87, no. 2, pp. 851–858.
Kambris, Z., Blaqborouqh, A.N., Pinto, C.B., et al., Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae, PLoS Pathog., 2010, vol. 6, p. e1001143.
Kent, B.N., Salichos, L., Gibbons, J.G., et al., Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by targeted genome capture, Genome Biol. Evol., 2011, vol. 3, pp. 209–218.
Klasson, L., Walker, T., Sebaihia, M., et al., Genome evolution of Wolbachia strain wPip from the Culex pipiens group, Mol. Biol. Evol., 2008, vol. 25, pp. 1877–1887.
Klasson, L., Westberg, J., Sapountzis, P., et al., The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 5725–5730.
Lo, N., Paraskevopoulos, C., Bourtzis, K., et al., Taxonomic status of the intracellular bacterium Wolbachia pipientis, Int. J. Syst. Evol. Microbiol, 2007, vol. 57, pp. 654–657.
Lu, P., Bian, G., Pan, X., and Xi, Z., Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells, PLoS Neglected Trop. Dis., 2012, vol. 6, no. 7, p. e1754.
Markov, A.V. and Zakharov, I.A., Sexual reproduction of insects is regulated by cytoplasmic bacteria, Russ. J. Dev. Biol., 2005, vol. 36, no. 4, pp. 230–239.
Martin, F., Shaples, G.J., Lloyd, R.G., et al., Characterization of a thermosensitive Escherichia coli aspartyl-tRNA synthetase mutant, J. Bacteriol., 1997, vol. 179, pp. 3691–3696.
McMeniman, C.J., Lana, R.V., Cass, B.N., et al., Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, Science, 2009, vol. 323, pp. 141–144.
Miller, W.J., Ehrman, L., and Schneider, D., Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum, PLoS Pathog., 2010, vol. 6, no. 12, p. e1001214.
Min, K.-T. and Benzer, S., Wolbachia normally a symbiont of Drosophila, can be virulent, causing degeneration and early death, Proc. Natl. Acad. Sci. U.S.A., vol. 94, pp. 10792–10796.
Moreira, L.A., Iturbe-Ormaetxe, I., Jeffery, J.A., et al., A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium, Cell, 2009, vol. 39, pp. 1268–1278.
Osborne, S.E. and Leong, Y.S., O’Neill, S.L., and Johnson, K.N., Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans, PLoS Pathog., 2009, vol. 5, p. e1000656.
Osei-Amo, S., Hussain, M., O’Neill, S.L., and Asgari, S., Wolbachia-induced aae-miR-12 miRNA negatively regulates the expression of MCT1 and MCM6 genes in Wolbachia-infected mosquito cell line, PLoS One, 2012, vol. 7, no. 11, p. e50049.
Pan, X., Zhou, G., Wu, J., et al., Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 1, pp. E23–E31.
Pannebakker, B.A., Loppin, B., Elemans, C.P., et al., Parasitic inhibition of cell death facilitates symbiosis, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 213–215.
Panteleev, D.Yu., Goryacheva, I.I., Andrianov, B.V., et al., The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster, Russ. J. Genet., 2007, vol. 43, no. 9, pp. 1066–1069.
Pinto, S.B., Mariconti, M., Bazzocchi, C., et al., Wolbachia surface protein induces innate immune responses in mosquito cells, BMC Microbiol., 2012, vol. 12,suppl. 1, p. 11.
Pinto, S.B., Stainton, K., Harris, S., et al., Transcriptional regulation of Culex pipiens mosquitoes by Wolbachia influences cytoplasmic incompatibility, PLoS Pathog., 2013, vol. 9, no. 10, p. e1003647.
Poinsot, D., Bourtzis, K., Markakis, G., et al., Injection of a Wolbachia from Drosophila melanogaster into D. simulans: host effect and cytoplasmic incompatibility relationships, Genetics, 1998, vol. 150, no. 9, pp. 227–237.
Rances, E., Johnson, T.K., Popovici, J., et al., The Toll and Imd pathways are not required for Wolbachia-mediated dengue virus interference, J. Virol., 2013, vol. 87, no. 21, pp. 11945–11949.
Richardson, M.F., Weinert, L.A., Welch, J.J., et al., Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster, PLoS Genet., 2012, vol. 8, no. 12, p. e1003129.
Riegler, M., Sidhu, M., Miller, W.J., and O’Neill, S.L., Evidence for a global Wolbachia replacement in Drosophila melanogaster, Curr. Biol., 2005, vol. 15, pp. 1428–1433.
Riegler, M., Iturbe-Ormaetxe, I., Woolfit, M., et al., Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of Wolbachia, BMC Microbiol., 2012, vol. 12, p. 12.
Ros, V.I., Fleming, V.M., Feil, E.J., and Breeuwer, J.A., How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia super-group recovered from spider mites (Acari: Tetranychidae), Appl. Environ. Microbiol., 2009, vol. 75, pp. 1036–1043.
Rottschaefer, S.M. and Lazzaro, B.P., No effect of Wolbachia on resistance to intracellular infection by pathogenic bacteria in Drosophila melanogaster, PLoS One, 2012, vol. 7, no. 7, p. e40500.
Rouhier, N., Couturier, J., Johnson, M.K., and Jacquot, J.P., Glutaredoxins: roles in iron homeostasis, Trends Biochem. Sci., 2010, vol. 35, pp. 43–52.
Rowley, S.M., Raven, R.J., and McGraw, E.A., Wolbachia pipientis in Australian spiders, Curr. Microbiol., 2004, vol. 49, pp. 208–214.
Salzberg, S.L., Puiu, D., Sommer, D.D., et al., Genome sequence of the Wolbachia endosymbiont of Culex quinquefasciatus JHB, J. Bacteriol., 2009, vol. 191, no. 5, p. 1725.
Saridaki, A. and Bourtzis, K., Wolbachia: more than just a bug in insects’ genitals, Curr. Opin. Microbiol., 2010, vol. 13, pp. 67–72.
Strunov, A.A., Ilinskii, Yu.Yu., Zakharov, I.K., and Kiseleva, E.V., Influence of higher temperature on survival of Drosophila melanogaster infected by pathogenic strain of Wolbachia, Vavilov. Zh. Genet. Selekt., 2013, vol. 17, no. 2, pp. 265–276.
Sugimoto, T.N. and Ishikawa, Y., A male-killing Wolbachia carries a feminizing factor and is associated with degradation of the sex-determining system of its host, Biol. Lett., 2012, vol. 8, pp. 412–415.
Sun, L.V. Riegler, M., and O’Neill, S.L., development of a physical and genetic map of the virulent Wolbachia strain wMelPop, J. Bacteriol., 2003, vol. 185, pp. 7077–7084.
Tamas, I., Klasson, L., Canback, B., et al., 50 million years of genomic stasis in endosymbiotic bacteria, Science, 2002, vol. 296, pp. 2376–2379.
Teixeira, L., Ferreira, A., and Ashburner, M., The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster, PLoS Biol., 2008, vol. 6, no. 12, p. e1000002.
Toomey, M.E., Panaram, K., Fast, E.M., et al., Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 26, pp. 10788–10793.
Vaishampayan, P.A., Dhotre, D.P., Gupta, R.P., et al., Molecular evidence and phylogenetic affiliations of Wolbachia in cockroaches, Mol. Phylogenet. Evol., 2007, vol. 44, no. 3, pp. 1346–1351.
Verne, S., Johnson, M., Bouchon, D., and Grandjean, F., Evidence for recombination between feminizing Wolbachia in the isopod genus Armadillidium, Gene, 2007, vol. 397, pp. 58–66.
Wee, B.A., Pavlides, J., et al., Genomic evolution of the pathogenic Wolbachia strain, wMelPop, Genome Biol. Evol., 2013, vol. 5, no. 11, pp. 2189–2204.
Werren, J.H., Baldo, L., and Clark, M.E., Wolbachia: master manipulators of invertebrate biology, Nat. Rev. Microbiol., 2008, vol. 6, pp. 741–751.
Woolfit, M., Iturbe-Ormaetxe, I., Brownlie, J.C., et al., Genomic evolution of the pathogenic Wolbachia strain, wMelPop, Genome Biol. Evol., 2013, vol. 5, no. 11, pp. 2189–2204. doi: 10.1093/gbe/evt169
Wu, M., Sun, L.V., Vamathevan, J., et al., Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements, PLoS Biol., 2004, vol. 2, pp. 327–341.
Xi, Z., Gavotte, L., Xie, Y., and Dobson, S.L., Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host, BMC Genom., 2008, vol. 9, p. 1.
Zhang, G., Hussain, M., O’Neill, S.L., and Asgari, S., Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 25, pp. 10276–10281.
Zug, R. and Hammerstein, P., Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected, PLoS One, 2012, vol. 7, no. 6, p. e38544.