Biological Degradation of Polycyclic Aromatic Compounds (PAHs) in Soil: a Current Perspective
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aburto A, Fahy A, Coulon F, Lethbridge G, Timmis KN, Ball AS, et al. Mixed aerobic and anaerobic microbial communities in benzene-contaminated groundwater. J Appl Microbiol. 2009;106(1):317–28.
Aburto-Medina A, Ball A. Microorganisms involved in anaerobic benzene degradation. Ann Microbiol. 2014;65:1–13. https://doi.org/10.1007/s13213-014-0926-8 .
Adetutu EM, Ball AS, Weber J, Aleer S, Dandie CE, Juhasz AL. Impact of bacterial and fungal processors on 14C-hexadecane mineralisation in weathered hydrocarbon contaminated soil. Sci Total Environ. 2012;414:585–91.
Ahangar AG. Sorption of PAHs in the soil environment with emphasis on the role of soil organic matter: a review. World Appl Sci J. 2010;11(7):759–65.
Albaiges J, Frei RW, Merian E. Chemistry and analysis of hydrocarbons in the environment. New York: Gordon and Breach Science Publishers; 1983.
Atlas RM, Bartha R. Microbial ecology: fundamentals and applications. MA: Addison-Wealey; 1981. p. 423–7.
Balaji V, Arulazhagan P, Ebenezer P. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J Environ Biol. 2014;35(3):521–9.
Ball A. Bioremediation. In: Ahmad I, Hayat S, Pichtel J, editors. Heavy metal contamination of soil: problems & remedies. New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd.; 2006.
Bell TH, Joly S, Pitre FE, Yergeau E. Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol. 2014;32(5):271–80. https://doi.org/10.1016/j.tibtech.2014.02.008 .
Cébron A, Norini M-P, Beguiristain T, Leyval C. Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHD[α]) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods. 2008;73(2):148–59.
Cébron A, Beguiristain T, Faure P, Norini M-P, Masfaraud J-F, Leyval C. Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil. Appl Environ Microbiol. 2009;75(19):6322–30.
Chang BV, Shiung LC, Yuan SY. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere. 2002;48(7):717–24. https://doi.org/10.1016/S0045-6535(02)00151-0 .
Chen Y, Murrell JC. When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol. 2014;18(4):157–63. https://doi.org/10.1016/j.tim.2010.02.002 .
Crampon M, Bodilis J, Portet-Koltalo F. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. J Hazard Mater. 2018;359:500–9. https://doi.org/10.1016/j.jhazmat.2018.07.088 .
Fahy A. Bacterial diversity and community dynamics in a benzene-contaminated sandstone aquifer. England: University of Essex; 2003.
Fathepure BZ. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol. 2014;5(173). https://doi.org/10.3389/fmicb.2014.00173 .
Furuno S, Remer R, Chatzinotas A, Harms H, Wick LY. Use of mycelia as paths for the isolation of contaminant-degrading bacteria from soil. Microb Biotechnol. 2012;5(1):142–8.
Gallagher E, McGuinness L, Phelps C, Young LY, Kerkhof LJ. 13C-carrier DNA shortens the incubation time needed to detect benzoate-utilizing denitrifying bacteria by stable-isotope probing. Appl Environ Microbiol. 2005;71(9):5192–6.
Gan S, Lau EV, Ng HK. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater. 2009;172(2–3):532–49. https://doi.org/10.1016/j.jhazmat.2009.07.118 .
Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol. 2016;7(1369). https://doi.org/10.3389/fmicb.2016.01369 .
Greenwood PF, Wibrow S, George SJ, Tibbett M. Hydrocarbon biodegradation and soil microbial community response to repeated oil exposure. Org Geochem. 2009;40(3):293–300.
Grossman M, Prince RC, Garrett RM, Garrett KK, Bare RE, O’Neil KR, et al., editors. Microbial diversity in oiled and un-oiled shoreline sediments in the Norwegian Artic. Eighth International Symposium on Microbial Ecology. Halifax: Atlantic Canada Society fro Microbial Ecology; 2000.
Habe H, Omori T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem. 2003;67(2):225–43.
Han Y, Zhang Y, Xu C, Hsu CS. Molecular characterization of sulfur-containing compounds in petroleum. Fuel. 2018;221:144–58. https://doi.org/10.1016/j.fuel.2018.02.110 .
Haritash A, Kaushik C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 2009;169(1):1–15.
Huang WE, Ferguson A, Singer AC, Lawson K, Thompson IP, Kalin RM, et al. Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing couple with single-cell Raman-fluorescence in situ hybridization. Appl Environ Microbiol. 2009;75(1):234–41.
Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, et al. Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci Total Environ. 2018;628-629:1582–99. https://doi.org/10.1016/j.scitotenv.2018.02.037 .
Juhasz AL, Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad. 2000;45:57–88.
Juhasz AL, Waller N, Lease C, Bentham R, Stewart R. Pilot scale bioremediation of creosote-contaminated soil - efficacy of enhance natural attenuation and bioaugmentation strategies. Bioremed J. 2005;9(3/4):141–57.
Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci. 2017;51:52–74. https://doi.org/10.1016/j.jes.2016.08.023 .
Karthikeyan R, Bhandari A. Anaerobic biotransformation of aromatic and polycyclic aromatic hydrocarbons in soil microcosms: a review. J Hazard Subst Res. 2001;3(1):3.
Koshlaf E, Shahsavari E, Haleyur N, Mark Osborn A, Ball AS. Effect of biostimulation on the distribution and composition of the microbial community of a polycyclic aromatic hydrocarbon-contaminated landfill soil during bioremediation. Geoderma. 2019;338:216–25. https://doi.org/10.1016/j.geoderma.2018.12.001 .
Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere. 2017;168:944–68. https://doi.org/10.1016/j.chemosphere.2016.10.115 .
Lamendella R, Strutt S, Borglin S, Chakraborty R, Tas N, Mason O, et al. Assessment of the deepwater horizon oil spill impact on gulf coast microbial communities. Front Microbiol. 2014;5(130). https://doi.org/10.3389/fmicb.2014.00130 .
Lankadurai BP, Nagato EG, Simpson MJ. Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ Rev. 2013;21(3):180–205. https://doi.org/10.1139/er-2013-0011 .
Lee H, Jang Y, Lee YM, Lee H, Kim G-H, Kim J-J. Enhanced removal of PAHs by Peniophora incarnata and ascertainment of its novel ligninolytic enzyme genes. J Environ Manag. 2015;164:10–8. https://doi.org/10.1016/j.jenvman.2015.08.036 .
Li J, Luo C, Zhang D, Cai X, Jiang L, Zhao X, et al. Diversity of the active phenanthrene degraders in PAH-polluted soil is shaped by ryegrass rhizosphere and root exudates. Soil Biol Biochem. 2019;128:100–10. https://doi.org/10.1016/j.soilbio.2018.10.008 .
Liao X, Zhao D, Yan X, Huling SG. Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil. J Hazard Mater. 2014;276:26–34. https://doi.org/10.1016/j.jhazmat.2014.05.018 .
Lin Q, Mendelssohn IA, Graham SA, Hou A, Fleeger JW, Deis DR. Response of salt marshes to oiling from the deepwater horizon spill: implications for plant growth, soil surface-erosion, and shoreline stability. Sci Total Environ. 2016;557-558:369–77. https://doi.org/10.1016/j.scitotenv.2016.03.049 .
Mazard S, Schafer H. Stable isotope probing to study functional components of complex microbial ecosystems. Methods Mol Biol. 2014;1096:169–80. https://doi.org/10.1007/978-1-62703-712-9_14 .
Muckian LM, Grant RJ, Clipson NJW, Doyle EM. Bacterial community dynamics during bioremediation of phenanthrene- and fluoranthene-amended soil. Int Biodeterior Biodegrad. 2009;63(1):52–6.
Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59(3):695–700.
Neufeld JD, Wagner M, Murrell JC. Who eats what, where and when? Isotope labelling experiments are coming of age. Int Soc Microb Ecol J. 2007;1:103–10.
Panigrahi S, Velraj P, Subba Rao T. Chapter 21 - functional microbial diversity in contaminated environment and application in bioremediation. In: Das S, Dash HR, editors. Microbial diversity in the genomic era: Academic Press; 2019. p. 359–85.
Phelps CD, Battistelli J, Young LY. Metabolic biomarkers for monitoring anaerobic naphthalene biodegradation in situ. Environ Microbiol. 2002;4(9):532–7.
Regonne RK, Martin F, Mbawala A, Ngassoum MB, Jouanneau Y. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ. Environ Pollut. 2013;180:145–51. https://doi.org/10.1016/j.envpol.2013.04.038 .
Rogers SL, McClure N. Chapter 2: the role of microbiological studies in bioremediation process optimization. In: Head IM, Singleton I, Milner MG, editors. Bioremediation: a critical review. England: Horizon Scientific Press; 2003.
Saito A, Iwabuchi T, Harayama S. Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere. 1999;38(6):1331–7.
Schneidewind U, Haest PJ, Atashgahi S, Maphosa F, Hamonts K, Maesen M, et al. Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources. J Contam Hydrol. 2014;157:25–36. https://doi.org/10.1016/j.jconhyd.2013.10.006 .
Schwarz A, Adetutu EM, Juhasz AL, Aburto-Medina A, Ball AS, Shahsavari E. Response of the fungal community to chronic petrogenic contamination in surface and subsurface soils. Geoderma. 2019;338:206–15. https://doi.org/10.1016/j.geoderma.2018.12.004 .
Seo JS, Keum YS, Li QX. Bacterial degradation of aromatic compounds. Int J Environ Res Public Health. 2009;6(1):278–309. https://doi.org/10.3390/ijerph6010278 .
Shahsavari E, Adetutu EM, Anderson PA, Ball AS. Necrophytoremediation of phenanthrene and pyrene in contaminated soil. J Environ Manag. 2013;122:105–12. https://doi.org/10.1016/j.jenvman.2013.02.050 .
Shahsavari E, Adetutu EM, Ball AS. Phytoremediation and necrophytoremediation of petrogenic hydrocarbon-contaminated soils. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L, editors. Phytoremediation: Management of Environmental Contaminants, 2. Cham: Springer International Publishing; 2015. p. 321–34.
Shahsavari E, Aburto-Medina A, Khudur LS, Taha M, Ball AS. From microbial ecology to microbial ecotoxicology. In: Cravo-Laureau C, Cagnon C, Lauga B, Duran R, editors. Microbial ecotoxicology. Cham: Springer International Publishing; 2017a. p. 17–38.
Shahsavari E, Poi G, Aburto-Medina A, Haleyur N, Ball AS. Bioremediation approaches for petroleum hydrocarbon-contaminated environments. In: Anjum NA, Gill SS, Tuteja N, editors. Enhancing cleanup of environmental pollutants: volume 1: biological approaches. Cham: Springer International Publishing; 2017b. p. 21–41.
Silva ÍS, Santos EC, Menezes CR, Faria AF, Franciscon E, Grossman M, et al. Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour Technol. 2009;100(20):4669–75.
Simon C, Daniel R. Metagenomic analyses: past and future trends. Appl Environ Microbiol. 2011;77(4):1153–61.
Singleton DR, Guzman Ramirez L, Aitken MD. Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain. Appl Environ Microbiol. 2009;75(9):2613–20. https://doi.org/10.1128/aem.01955-08 .
SKM. Management of contamianted Soils in South Australia. A perspective on the drivers, impediments and opportunitieis for sustainable management of contamianted soils in South Australia. In: SA ZW, editor. Adelaide; 2013.
Smit E, Leeflanf P, Glandorf B, van Elsas JD, Wernars K. Analysis of fungal diversity in the wheat rhizosphere by sequencing of clone PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol. 1999;65(6):2614–21.
Taha M, Shahsavari E, Aburto-Medina A, Foda MF, Clarke B, Roddick F, et al. Bioremediation of biosolids with Phanerochaete chrysosporium culture filtrates enhances the degradation of polycyclic aromatic hydrocarbons (PAHs). Appl Soil Ecol. 2017. https://doi.org/10.1016/j.apsoil.2017.11.002 .
Techtmann SM, Hazen TC. Metagenomic applications in environmental monitoring and bioremediation. J Ind Microbiol Biotechnol. 2016;43(10):1345–54. https://doi.org/10.1007/s10295-016-1809-8 .
The International Tanker Owners Pollution Federation Limited. Downward trend in spills in maintained despite blip. 2014. http://www.itopf.com/information-services/data-and-statistics/statistics/ . Accessed 4 June 2014.
Tierney M, Young L. Anaerobic degradation of aromatic hydrocarbons. Handbook of hydrocarbon and lipid microbiology. 2010;925–34.
Toledo FL, Calvo C, Rodelas B, Gonzalez-Lopez J. Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Syst Appl Microbiol. 2006;29:244–52.
Toth C, Berdugo-Clavijo C, O’Farrell C, Jones G, Sheremet A, Dunfield P, et al. Stable isotope and metagenomic profiling of a methanogenic naphthalene-degrading enrichment culture. Microorganisms. 2018;6(3):65.
Tratnyek PG, Johnson RL. Nanotechnologies for environmental cleanup. Nano Today. 2006;1(2):44–8. https://doi.org/10.1016/S1748-0132(06)70048-2 .
Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, et al. Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv. 2013;31(2):154–65. https://doi.org/10.1016/j.biotechadv.2012.09.003 .
van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418–26. https://doi.org/10.1016/j.tig.2014.07.001 .
Wang C, Sun H, Li J, Li Y, Zhang Q. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere. 2009;77:733–8.
Wick AF, Haus NW, Sukkariyah BF, Haering KC, Daniels WL. Remediation of PAH-contaminated soils and sediments: a literature review. In: Sciences DoCaSE, editor. . Blacksburg: Virginia Polytechnic Institute and State University; 2011.
Wu Y, Teng Y, Li Z, Liao X, Luo Y. Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol Biochem. 2008;40(3):789–96. https://doi.org/10.1016/j.soilbio.2007.10.013 .
Xu Z, Hansen MA, Hansen LH, Jacquiod S, Sorensen SJ. Bioinformatic approaches reveal metagenomic characterization of soil microbial community. PLoS One. 2014;9(4):e93445. https://doi.org/10.1371/journal.pone.0093445 .
Yang X, Ye J, Lyu L, Wu Q, Zhang R. Anaerobic biodegradation of pyrene by Paracoccus denitrificans under various nitrate/nitrite-reducing conditions. Water Air Soil Pollut. 2013;224(5):1578. https://doi.org/10.1007/s11270-013-1578-1 .
Zhang H, Tang J, Wang L, Liu J, Gurav RG, Sun K. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar. J Environ Sci. 2016;47:7–13. https://doi.org/10.1016/j.jes.2015.12.023 .