Biological Asymmetry and Cardiovascular Blood Transport
Tóm tắt
Asymmetry is a very remarkable property of biological structures and functions. Most publications concerning asymmetry are related to brain function. However, as will be shown in this study, the asymmetry in the cardiovascular system plays an important role with respect to optimization of functions. Weibel (Cambridge, MA, 2000) has used the name “symmorphosis” to describe the ideal interrelation between structure and function. Therefore, asymmetry is a component of symmorphosis, both in terms of architecture as well as of time and time courses. The asymmetry of the heart chambers enables the “mechanism of the movement of the plane of the valves” to improve the pumping function. The time course of the contraction of the heart and of the ejection into the large arteries is asymmetric in time in order to minimize energy consumption. The so-called Liebau effect that permits valveless pumping of fluids depends on the asymmetric properties of conduits. One important example of the Liebau effect appears to be in the function of the coronary vascular system. It can be shown that there are several mechanisms to produce valveless pumping. The common denominator of several simple models described in the following sections is the dependence of the unidirectional pumping effect on asymmetry. It appears that many additional examples of transport effects concerning fluids or gases in biology as well as in engineering have some connection with the Liebau effect.
Tài liệu tham khảo
Aldea GS, Zhang X, Rivers S, and Shemin RJ. Salvage of ischemic myocardium with simplified and even delayed coronary sinus retro-perfusion. Ann Thorac Surg 63(4):1210–1211, 1997.
Auerbach D, Moehring W, and Moser M. An analytic model of valveless pumping. Cardiovasc Eng 4: 201–208, 2004.
Boehme W. Ueber den aktiven Anteil des Herzens an der Foerderung des Venenblutes. Ergebnisse der Physiologie 38: 251–338, 1936.
Juznic SCJE, Juznic G, and Knap B. Ventricular shape: Spherical or cylindrical? In: Drzewiecki GM, Li JK-J, Eds., Analysis and Assessment of Cardiovascular Function. New York, Berlin, Heidelberg: Springer, pp. 156–171, 1997.
Kenner T. The central arterial pulses. PflÜgers Arch 353: 67–81 1975.
Kenner T. Physical and mathematical modeling in cardiovascular systems. In Hwang NHC, Gross DR, Patel DJ, Eds., Quantitative Cardiovascular Studies. Clinical Research Applications and Engineering Principles. Baltimore: University Park Press, 1979, pp. 41–109.
Kenner T, Moser M, Huang, and Noordergraaf A. Optimization of structure and function of the cardiovascular system. Third World Congress of Biomechanics in Sapporo. Abstract, p. 44, 1998.
Kenner T, Moser M, and Mohl W. Wave reflections and pressure flow relations in the coronary circulation. In Mohl W, Wolner E, and Glogar D, Eds, The Coronary Sinus. New York: Springer-Verlag, 1984, pp. 60–72. Kenner T, Moser M, Mohl W, and Tiedt N. Inflow, outflow and pressures in the coronary circulation. In Mohl W, Faxon D, and Wolner E, Eds., CSI - A New Approach to Interventional Cardiology. Darmstadt: Steinkopff Verlag, 1986, pp. 15-26.
Kenner T, Moser M, Tanev I, and Ono K. The Liebau-Effect or: On the optimal use of energy for the circulation of blood. Scripta Medica (Brno) 73: 9–14, 2000.
Kenner T, and Pfeiffer KP. Studies on the optimal matching between heart and arterial system. In Baan J, Arntzenius AC, and Yellin EL, eds., Cardiac Dynamics. The Hague: Martinus Nijnhoff Publ., 1980, pp. 261–270.
Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, and Yacoub MH. Asymmetric redirection of flow through the heart. Nature 404: 759–761 2000.
Krasny R, Kammermeier H, and Køhler J. Biomechanics of valvular plane displacement of the heart. Basic Res Cardiol 86: 572–581 1991.
Liebau G. Über periphere Blutførderung. In Pestel E and Liebau G, Eds. Phänomen der pulsierenden Strømung im Blutkreislauf aus technologischer, physiologischer und klinischer Sicht. Mannheim, Wien, ZÜrich: Bibliographisches Institut, 1970, pp. 67–78.
Mainzer K. Symmetrien der Natur, Berlin. New York: de Gruyter Verlag, 1988.
Mohl W, Wolner E, and Glogar D, Eds. The Coronary Sinus. Darmstadt: Steinkopff Verlag; New York: Springer-Verlag, 1984.
Mohl W, Simon P, Neumann F, Schreiner W, and Punzengruber, C. Clinical evaluation of pressure-controlled intermittent coronary sinus occlusion: Randomized trial during coronary artery surgery. Ann Thorac Surg. 46: 192–201 1988.
Moore KL. Embryologie. Stuttgart: Schattauer Verlag, 1985.
Moser M, Mohl W, Gallasch E, and Kenner T. Optimization of pressure controlled intermittent coronary sinus occlusion intervals by density measurement. In Wolner E, and Glogar D, Eds., The Coronary Sinus. Darmstadt: Steinkopff-Verlag, New York: Springer-Verlag, 1984, pp. 523–528.
Moser M, Huang JW, Schwarz GS, Kenner T, and Noordergraaf A. Impedance defined flow, generalization of William Harvey's concept of the circulation—370 years later. Int J Cardiovasc Med Sci 1: 205–211 1998.
Schmidt-Nielsen K. Scaling, Why is Animal Size so Important? Cambridge, London: Cambridge University Press, 1985.
Tanev I, Ono K, Kenner T, Moser M, and Noordergraaf A. The role of asymmetry for the transport function of the circulation. Euromech Coll 385 in Graz, Abstract, pp. 50–51, 1999.
Tiedt N. Die koronare Durchblutung-Physiologie und Pathophysiologie. Z ärztl Fortbildung 75: 1141–1150 1981.
Weibel ER. Symmorphosis, On Form and Function in Shaping Life. Cambridge, MA: Harvard University Press, 2000.
Wetterer E, and Kenner T. Dynamik des Arterienpulses. Verlag, Berlin, Heidelberg, New York: Springer, 1968.