Biolistic inoculation of plants with viroid nucleic acids
Tài liệu tham khảo
Ambros, 1999, Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host, J. Gen. Virol., 80, 2239, 10.1099/0022-1317-80-8-2239
Baumstark, 1997, Switch from cleavage to ligation is driven by a change from a tetraloop to loop E conformation, EMBO J., 16, 599, 10.1093/emboj/16.3.599
Candresse, 1990, The role of the viroid central conserved region in cDNA infectivity, Virology, 175, 232, 10.1016/0042-6822(90)90203-4
Cardarelli, 1987, Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype, Mol. Gen. Genet., 209, 475, 10.1007/BF00331152
Cress, 1983, Construction of infectious potato spindle tuber viroid cDNA clones, Nucl. Acids Res., 11, 6821, 10.1093/nar/11.19.6821
Fakhfakh, 1996, Cell-free cloning and biolistic inoculation of an infectious cDNA potato virus Y, J. Gen. Virol., 77, 519, 10.1099/0022-1317-77-3-519
Galon, 1995, Particle bombardment drastically increases the infectivity of cloned DNA of zucchini yellow mosaic potyvirus, J. Gen. Virol., 76, 3223, 10.1099/0022-1317-76-12-3223
Gardner, 1986, Potato spindle tuber viroid infections mediated by the Ti plasmid of Agrobacterium tumefaciens, Plant Mol. Biol., 6, 221, 10.1007/BF00015228
Gelvin, 2003, Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool, Microbiol. Mol. Biol. Rev., 67, 16, 10.1128/MMBR.67.1.16-37.2003
Gilbertson, 1991, Cloning of the complete DNA genomes of four bean-infecting geminiviruses and determining their infectivity by electric discharge particle acceleration, Phytopathology, 81, 980, 10.1094/Phyto-81-980
Góra-Sochacka, 2001, Genetic variability of potato spindle tuber viroid RNA replicon, Acta Biochim. Pol., 48, 467, 10.18388/abp.2001_3930
Grimsley, 1986, “Agroinfection”, an alternative route for plant virus infection by using the Ti plasmid, Proc. Natl. Acad. Sci. U.S.A., 83, 3282, 10.1073/pnas.83.10.3282
2003
Hämäläinen, 2000, Recessive and dominant genes interfere with the vascular transport of Potato virus A in diploid potatoes, Mol. Plant Microbe In., 13, 402, 10.1094/MPMI.2000.13.4.402
Hammond, 1989, Infectivity of chimeric viroid transcripts reveals the presence of alternative processing sites in potato spindle tuber viroid, Virology, 170, 486, 10.1016/0042-6822(89)90440-6
Harders, 1989, Imaging of viroids in nuclei from tomato leaf tissue by in situ hybridization and confocal laser scanning microscopy, EMBO J., 8, 3941, 10.1002/j.1460-2075.1989.tb08577.x
Hecker, 1988, Analysis of RNA structures by temperature-gradient gel electrophoresis: viroid replication and processing, Gene, 72, 59, 10.1016/0378-1119(88)90128-X
Keese, 1985, Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution, Proc. Natl. Acad. Sci. U.S.A., 82, 4582, 10.1073/pnas.82.14.4582
Kekarainen, 2002, Functional genomics on Potato virus A: virus genome-wide map of sites essential for virus propagation, Genome Res., 12, 584, 10.1101/gr.220702
Klein, 1987, High-velocity microprojectiles for delivering nucleic acids into living cells, Nature, 327, 70, 10.1038/327070a0
Kofalvi, 1997, Hop stunt viroid (HSVd) sequence variants from Prunus species: evidence for recombination between HSVd isolates, J. Gen. Virol., 78, 3177, 10.1099/0022-1317-78-12-3177
Mäenpää, 1999, Transformation of nuclear and plastomic plant genomes by biolistic particle bombardment, Mol. Biotechnol., 13, 67, 10.1385/MB:13:1:67
Matoušek, 1988, Acid nucleases in PSTV-infected tomato (Lycopersicon esculentum L.). I. Levels of acid nuclease activity in healthy and PSTV-infected tomato leaves and callus tissues, J. Plant Physiol., 133, 340, 10.1016/S0176-1617(88)80212-8
Matoušek, 1988, Acid nucleases in PSTV-infected tomato (Lycopersicon esculentum L.). II. Characterization of sugar non-specific nuclease extracted from healthy and PSTV-infected tomato leaves, J. Plant Physiol., 133, 401, 10.1016/S0176-1617(88)80026-9
Matoušek, 1994, Inhibition of viroid infection by antisense RNA expression in transgenic plants, Biol. Chem. H-S, 375, 765
Matoušek, 1995, The gradual reduction of viroid levels in hop mericlones following heat therapy: a possible role for a nuclease degrading dsRNA, Biol. Chem. H-S, 376, 715
Matoušek, 2001, The variability of hop latent viroid as induced upon heat treatment, Virology, 287, 349, 10.1006/viro.2001.1044
Matoušek, 2004, Analysis of thermal stress-mediated PSTVd variation and biolistic inoculation of progeny of viroid “thermomutants” to tomato and Brassica species, Virology, 323, 9, 10.1016/j.virol.2004.02.010
Merits, 2002, Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells, J. Gen. Virol., 83, 1211, 10.1099/0022-1317-83-5-1211
Meshi, 1984, Double-stranded cDNAs of hop stunt viroid are infectious, J. Biochem., 95, 1521, 10.1093/oxfordjournals.jbchem.a134761
Murashige, 1962, A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 15, 473, 10.1111/j.1399-3054.1962.tb08052.x
Owens, 1986, Site-specific mutagenesis of potato spindle tuber viroid cDNA – alterations within premelting region-2 that abolish infectivity, Plant Mol. Biol., 6, 179, 10.1007/BF00021487
Pelchat, 2003, Subviral RNA: a database of the smallest known auto-replicable RNA species, Nucl. Acids Res., 31, 444, 10.1093/nar/gkg026
Puchta, 1988, The molecular structure of hop latent viroid (HLV), a new viroid occurring world-wide in hops, Nucl. Acids Res., 16, 4197, 10.1093/nar/16.10.4197
Qiu, 1996, Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization, Gene Ther., 3, 262
Rakowski, 1994, Infectivity of linear monomeric transcripts of citrus exocortis viroid: terminal sequence requirements for processing, Virology, 203, 328, 10.1006/viro.1994.1491
Riesner, 1979, Structure and structure formation of viroids, J. Mol. Biol., 133, 85, 10.1016/0022-2836(79)90252-3
Riesner, 1989, Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein–nucleic acid interactions, Electrophoresis, 10, 377, 10.1002/elps.1150100516
Rigden, 1992, In vitro synthesis of an infectious viroid: analysis of the infectivity of monomeric linear CEV, Virology, 186, 201, 10.1016/0042-6822(92)90074-Y
Rigden, 1993, Analysis of sequence variation in grapevine yellow speckle viroid 1 reveals two distinct alternative structures for the pathogenic domain, Virology, 193, 474, 10.1016/S0042-6822(15)80001-4
Salazar, 1988, Analysis of viroid replication following Agrobacterium-mediated inoculation of non-host species with potato spindle tuber viroid cDNA, J. Gen. Virol., 69, 879, 10.1099/0022-1317-69-4-879
Schnölzer, 1985, Correlation between structure and pathogenicity of potato spindle tuber viroid, EMBO J., 4, 2181, 10.1002/j.1460-2075.1985.tb03913.x
Schrader, 2003, A mini-RNA containing the tetraloop, wobble-pair and loop E motifs of the central conserved region of potato spindle tuber viroid is processed into a minicircle, Nucl. Acids Res., 31, 988, 10.1093/nar/gkg193
Schumacher, 1986, Diagnostic procedure for detection of viroids and viruses with circular RNAs by “return”-gel electrophoresis, J. Phytopathol., 115, 332, 10.1111/j.1439-0434.1986.tb04346.x
Tabler, 1984, Cloned single- and double-stranded DNA copies of potato spindle tuber viroid (PSTV) RNA and co-inoculated subgenomic DNA fragments are infectious, EMBO J., 3, 3055, 10.1002/j.1460-2075.1984.tb02257.x
Tabler, 1985, Infectivity studies on different potato spindle tuber viroid (PSTV) RNAs synthesized in vitro with the SP6 transcription system, EMBO J., 4, 2191, 10.1002/j.1460-2075.1985.tb03914.x
Visvader, 1985, Infectivity and in vitro mutagenesis of monomeric cDNA clones of citrus exocortis viroid indicates the site of processing of viroid precursors, Nucl. Acids Res., 13, 5843, 10.1093/nar/13.16.5843
Visvader, 1985, Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity, Nucl. Acids Res., 13, 2907, 10.1093/nar/13.8.2907