Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jha, 2013, Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone, Waste Manag., 33, 1890, 10.1016/j.wasman.2013.05.008
Niu, 2014, Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration, Chemosphere, 109, 92, 10.1016/j.chemosphere.2014.02.059
Zeng, 2015, Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid, J. Hazard. Mater, 295, 112, 10.1016/j.jhazmat.2015.02.064
Ferreira, 2009, Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries, J. Power Sources, 187, 238, 10.1016/j.jpowsour.2008.10.077
Al-Thyabat, 2013, Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: critical review, Min. Eng., 45, 4, 10.1016/j.mineng.2012.12.005
Zhang, 2013, Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries, J. Power Sources, 240, 766, 10.1016/j.jpowsour.2013.05.009
Gratz, 2014, A closed loop process for recycling spent lithium ion batteries, J. Power Sources, 262, 255, 10.1016/j.jpowsour.2014.03.126
Li, 2013, Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment, J. Power Sources, 233, 180, 10.1016/j.jpowsour.2012.12.089
Dewulf, 2010, Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings, Resour. Conserv. Recycl, 54, 229, 10.1016/j.resconrec.2009.08.004
Xu, 2008, A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources, 177, 512, 10.1016/j.jpowsour.2007.11.074
Li, 2010, Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries, Waste Manag., 30, 2615, 10.1016/j.wasman.2010.08.008
Georgi-Maschler, 2012, Development of a recycling process for Li-ion batteries, J. Power Sources, 207, 173, 10.1016/j.jpowsour.2012.01.152
Zeng, 2013, Influence of silver ions on bioleaching of cobalt from spent lithium batteries, Min. Eng., 49, 40, 10.1016/j.mineng.2013.04.021
Deng, 2013, Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1, J. Hazard. Mater, 248–249, 107, 10.1016/j.jhazmat.2012.12.051
Amiri, 2011, Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum, Sep. Purif. Technol., 80, 566, 10.1016/j.seppur.2011.06.012
Xin, 2009, Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria, Bioresour. Technol., 100, 6163, 10.1016/j.biortech.2009.06.086
Ijadi Bajestani, 2014, Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization, Sep. Purif. Technol., 132, 309, 10.1016/j.seppur.2014.05.023
Zeng, 2012, A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries, J. Hazard. Mater, 199–200, 164, 10.1016/j.jhazmat.2011.10.063
Mishra, 2008, Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans, Waste Manag., 28, 333, 10.1016/j.wasman.2007.01.010
Wu, 2006, Metal extraction from municipal solid waste (MSW) incinerator fly ash—chemical leaching and fungal bioleaching, Enzyme Microb. Technol., 38, 839, 10.1016/j.enzmictec.2005.08.012
Ren, 2009, Biological leaching of heavy metals from a contaminated soil by Aspergillus niger, J. Hazard. Mater, 167, 164, 10.1016/j.jhazmat.2008.12.104
Santhiya, 2006, Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst, J. Biotechnol., 121, 62, 10.1016/j.jbiotec.2005.07.002
Yang, 2009, Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger, Bioresour. Technol., 100, 254, 10.1016/j.biortech.2008.05.026
Xu, 2009, Fungal bioleaching of incineration fly ash: metal extraction and modeling growth kinetics, Enzyme Microb. Technol., 44, 323, 10.1016/j.enzmictec.2009.01.006
Yang, 2008, Comparisons of one-step and two-step bioleaching for heavy metals removed from municipal solid waste incineration fly ash, Environ. Eng. Sci., 25, 783, 10.1089/ees.2007.0211
Qu, 2013, Bioleaching of heavy metals from red mud using Aspergillus niger, Hydrometallurgy, 136, 71, 10.1016/j.hydromet.2013.03.006
Aung, 2005, Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger, J. Biotechnol., 116, 159, 10.1016/j.jbiotec.2004.10.008
Santhiya, 2005, Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid, J. Biotechnol., 116, 171, 10.1016/j.jbiotec.2004.10.011
Brandl, 2001, Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi, Hydrometallurgy, 59, 319, 10.1016/S0304-386X(00)00188-2
Qu, 2013, Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10, Bioresour. Technol., 136, 16, 10.1016/j.biortech.2013.03.070
Deng, 2012, Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1, J. Hazard. Mater, 233–234, 25, 10.1016/j.jhazmat.2012.06.054
Kubicek, 1988, Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger, Appl. Environ. Microbiol., 54, 633, 10.1128/aem.54.3.633-637.1988
Ruijter, 1999, Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese, Microbiology, 145, 2569, 10.1099/00221287-145-9-2569
Burgstaller, 1993, Leaching of metals with fungi, J. Biotechnol., 27, 91, 10.1016/0168-1656(93)90101-R
Asghari, 2013, Bioleaching of spent refinery catalysts: a review, J. Ind. Eng. Chem., 19, 1069, 10.1016/j.jiec.2012.12.005
Xu, 2014, Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus, Biotechnol. Rep., 3, 8, 10.1016/j.btre.2014.05.009
Sun, 2012, Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries, Waste Manag., 32, 1575, 10.1016/j.wasman.2012.03.027
Nielsen, 2009, Review of secondary metabolites and mycotoxins from the Aspergillus niger group, Anal. Bioanal. Chem., 395, 1225, 10.1007/s00216-009-3081-5
Zhang, 2014, Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery, ACS Appl. Mater. Interfaces, 6, 17965, 10.1021/am504796n
Ahmad, 2006, Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route, Solid State Sci., 8, 425, 10.1016/j.solidstatesciences.2005.12.005
Julien, 2000, Local cationic environment in lithium nickel–cobalt oxides used as cathode materials for lithium batteries, Solid State Ion., 136, 887, 10.1016/S0167-2738(00)00503-8
Julien, 2000, Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries, Solid State Ion., 135, 241, 10.1016/S0167-2738(00)00370-2
Pavia, 2008
Jung, 2010, Nickel oxalate nanostructures for supercapacitors, J. Mater. Chem., 20, 6164, 10.1039/c0jm00279h