Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger

Journal of Power Sources - Tập 320 - Trang 257-266 - 2016
Nazanin Bahaloo-Horeh1, Seyyed Mohammad Mousavi1, Seyed Abbas Shojaosadati1
1Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jha, 2013, Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone, Waste Manag., 33, 1890, 10.1016/j.wasman.2013.05.008

Niu, 2014, Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration, Chemosphere, 109, 92, 10.1016/j.chemosphere.2014.02.059

Zeng, 2015, Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid, J. Hazard. Mater, 295, 112, 10.1016/j.jhazmat.2015.02.064

Ferreira, 2009, Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries, J. Power Sources, 187, 238, 10.1016/j.jpowsour.2008.10.077

Al-Thyabat, 2013, Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: critical review, Min. Eng., 45, 4, 10.1016/j.mineng.2012.12.005

Zhang, 2013, Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries, J. Power Sources, 240, 766, 10.1016/j.jpowsour.2013.05.009

Gratz, 2014, A closed loop process for recycling spent lithium ion batteries, J. Power Sources, 262, 255, 10.1016/j.jpowsour.2014.03.126

Li, 2013, Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment, J. Power Sources, 233, 180, 10.1016/j.jpowsour.2012.12.089

Dewulf, 2010, Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings, Resour. Conserv. Recycl, 54, 229, 10.1016/j.resconrec.2009.08.004

Xu, 2008, A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources, 177, 512, 10.1016/j.jpowsour.2007.11.074

Li, 2010, Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries, Waste Manag., 30, 2615, 10.1016/j.wasman.2010.08.008

Georgi-Maschler, 2012, Development of a recycling process for Li-ion batteries, J. Power Sources, 207, 173, 10.1016/j.jpowsour.2012.01.152

Zeng, 2013, Influence of silver ions on bioleaching of cobalt from spent lithium batteries, Min. Eng., 49, 40, 10.1016/j.mineng.2013.04.021

Deng, 2013, Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1, J. Hazard. Mater, 248–249, 107, 10.1016/j.jhazmat.2012.12.051

Amiri, 2011, Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum, Sep. Purif. Technol., 80, 566, 10.1016/j.seppur.2011.06.012

Xin, 2009, Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria, Bioresour. Technol., 100, 6163, 10.1016/j.biortech.2009.06.086

Ijadi Bajestani, 2014, Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization, Sep. Purif. Technol., 132, 309, 10.1016/j.seppur.2014.05.023

Zeng, 2012, A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries, J. Hazard. Mater, 199–200, 164, 10.1016/j.jhazmat.2011.10.063

Mishra, 2008, Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans, Waste Manag., 28, 333, 10.1016/j.wasman.2007.01.010

Wu, 2006, Metal extraction from municipal solid waste (MSW) incinerator fly ash—chemical leaching and fungal bioleaching, Enzyme Microb. Technol., 38, 839, 10.1016/j.enzmictec.2005.08.012

Ren, 2009, Biological leaching of heavy metals from a contaminated soil by Aspergillus niger, J. Hazard. Mater, 167, 164, 10.1016/j.jhazmat.2008.12.104

Santhiya, 2006, Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst, J. Biotechnol., 121, 62, 10.1016/j.jbiotec.2005.07.002

Yang, 2009, Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger, Bioresour. Technol., 100, 254, 10.1016/j.biortech.2008.05.026

Xu, 2009, Fungal bioleaching of incineration fly ash: metal extraction and modeling growth kinetics, Enzyme Microb. Technol., 44, 323, 10.1016/j.enzmictec.2009.01.006

Yang, 2008, Comparisons of one-step and two-step bioleaching for heavy metals removed from municipal solid waste incineration fly ash, Environ. Eng. Sci., 25, 783, 10.1089/ees.2007.0211

Qu, 2013, Bioleaching of heavy metals from red mud using Aspergillus niger, Hydrometallurgy, 136, 71, 10.1016/j.hydromet.2013.03.006

Aung, 2005, Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger, J. Biotechnol., 116, 159, 10.1016/j.jbiotec.2004.10.008

Santhiya, 2005, Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid, J. Biotechnol., 116, 171, 10.1016/j.jbiotec.2004.10.011

Brandl, 2001, Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi, Hydrometallurgy, 59, 319, 10.1016/S0304-386X(00)00188-2

Qu, 2013, Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10, Bioresour. Technol., 136, 16, 10.1016/j.biortech.2013.03.070

Deng, 2012, Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1, J. Hazard. Mater, 233–234, 25, 10.1016/j.jhazmat.2012.06.054

Kubicek, 1988, Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger, Appl. Environ. Microbiol., 54, 633, 10.1128/aem.54.3.633-637.1988

Ruijter, 1999, Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese, Microbiology, 145, 2569, 10.1099/00221287-145-9-2569

Burgstaller, 1993, Leaching of metals with fungi, J. Biotechnol., 27, 91, 10.1016/0168-1656(93)90101-R

Asghari, 2013, Bioleaching of spent refinery catalysts: a review, J. Ind. Eng. Chem., 19, 1069, 10.1016/j.jiec.2012.12.005

Xu, 2014, Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus, Biotechnol. Rep., 3, 8, 10.1016/j.btre.2014.05.009

Sun, 2012, Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries, Waste Manag., 32, 1575, 10.1016/j.wasman.2012.03.027

Nielsen, 2009, Review of secondary metabolites and mycotoxins from the Aspergillus niger group, Anal. Bioanal. Chem., 395, 1225, 10.1007/s00216-009-3081-5

Zhang, 2014, Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery, ACS Appl. Mater. Interfaces, 6, 17965, 10.1021/am504796n

Ahmad, 2006, Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route, Solid State Sci., 8, 425, 10.1016/j.solidstatesciences.2005.12.005

Julien, 2000, Local cationic environment in lithium nickel–cobalt oxides used as cathode materials for lithium batteries, Solid State Ion., 136, 887, 10.1016/S0167-2738(00)00503-8

Julien, 2000, Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries, Solid State Ion., 135, 241, 10.1016/S0167-2738(00)00370-2

Pavia, 2008

Jung, 2010, Nickel oxalate nanostructures for supercapacitors, J. Mater. Chem., 20, 6164, 10.1039/c0jm00279h

Gao, 1993, Identification of solid solutions of coprecipitated Ni-Co oxalates using XRD, TG and SEM techniques, Thermochim. Acta, 220, 75, 10.1016/0040-6031(93)80456-K