Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron–sulfur-oxidizing bacteria
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arshadi M, Mousavi SM (2014) Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: statistical evaluation and optimization. Bioresour Technol 174:233–242
Arshadi M, Mousavi SM (2015) Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Sep Purif Technol 147:210–219
Ballor NR, Nesbitt CC, Lueking DR (2006) Recovery of scrap iron metal value using biogenerated ferric iron. Biotechnol Bioeng 93:1089–1094
Bas AD, Deveci H, Yazici EY (2013) Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy 138:65–70
Bryan CG, Watkin EL, McCredden TJ, Wong ZR, Harrison STL, Kaksonen AH (2015) The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometallurgy 152:33–43
Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. Dominates South African commercial biooxidation tanks that operate at 40 °C. Appl Environ Microbiol 68:838–845
Dopson M, Bakeraustin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959
Erüst C, Akcil A, Gahan CS, Tuncuk A, Deveci H (2013) Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. J Chem Technol Biotechnol 88:2115–2132
Hallmann R, Friedrich A, Koops HP, Pommerening-Röser A, Rohde K, Zenneck C, Sand W (1992) Physiological characteristics of and physicochemical factors influence microbial metal leaching. Geomicrobiology 10:193–206
Hong Y, Valix M (2014) Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. J Clean Prod 65:465–472
Ilyas S, J-C Lee (2014) Biometallurgical recovery of metals from waste electrical and electronic equipment: a review. ChemBioEng Rev 1:148–169
Ilyas S, J-C Lee, R-A Chi (2013) Bioleaching of metals from electronic scrap and its potential for commercial exploitation. Hydrometallurgy 131–132:138–143
Işıldar A, van de Vossenberg J, Rene ER, van Hullebusch ED, Lens PNL (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manage 57:149–157
Jadhav U, Hocheng H (2013) Extraction of silver from spent silver oxide–zinc button cells by using Acidithiobacillus ferrooxidans culture supernatant. J Clean Prod 44:39–44
Jiang LL, Zhou JJ, Quan CS, Xiu ZL (2017) Advances in industrial microbiome based on microbial consortium for biorefinery. Bioresour Bioprocess 4:11
Jung M, Yoo K, Alorro RD (2017) Dismantling of electric and electronic components from waste printed circuit boards by hydrochloric acid leaching with stannic ions. Mater Trans 58:1076–1080
Kim SD, Baeb J, Chiu PC, Park HS, Cha DK (2005) Bioleaching of cadmium and nickel from synthetic sediments by thiobacillus ferrooxidans. Environ Geochem Health 27:229–235
Liang G, Tang J, Liu W, Zhou Q (2013) Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). J Hazard Mater 250–251:238–245
Liu J, Wu W, Zhang X, Zhu M, Tan W (2017) Adhesion properties of and factors influencing Leptospirillum ferriphilum in the biooxidation of refractory gold-bearing pyrite. Int J Miner Process 160:39–46
Meng L, Wang Z, Zhong YW, Guo L, Gao JT, Chen KY, Cheng HJ, Guo ZC (2017) Supergravity separation for recovering metals from waste printed circuit boards. Chem Eng J 326:540–550
More TT, Yadav JS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage 144:1
Mrážiková A, Kaduková J, Marcinčáková R, Velgosová O, Willner J, Fornalczyk A, Saternus M (2016) The effect of specific conditions on Cu, Ni, Zn and Al recovery from PCBS waste using acidophilic bacterial strains. Arch Metall Mater 61:261–264
Nie H, Yang C, Zhu N, Wu P, Zhang T, Zhang Y, Xing Y (2015) Isolation of Acidithiobacillus ferrooxidans strain Z1 and its mechanism of bioleaching copper from waste printed circuit boards. J Chem Technol Biotechnol 90:714–721
Pant D, Joshi D, Upreti MK, Kotnala RK (2012) Chemical and biological extraction of metals present in E waste: a hybrid technology. Waste Manage 32:979–990
Priya A, Hait S (2017) Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ Sci Pollut Res Int 24:6989–7008
Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408:183–191
Rodrigues MLM, Leão VA, Gomes O, Lambert F, Bastin D, Gaydardzhiev S (2015) Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor. Waste Manage 41:148–158
Shah MB, Tipre DR, Purohit MS, Dave SR (2015) Development of two-step process for enhanced biorecovery of Cu–Zn–Ni from computer printed circuit boards. J Biosci Bioeng 120:167–173
Silva RA, Park J, Lee E, Park J, Choi SQ, Kim H (2015) Influence of bacterial adhesion on copper extraction from printed circuit boards. Sep Purif Technol 143:169–176
Tian J, Wu N, Li J, Liu Y, Guo J, Yao B, Fan Y (2007) Nickel-resistant determinant from Leptospirillum ferriphilum. Appl Environ Microbiol 73:2364–2368
Vestola EA, Kuusenaho MK, Närhi HM, Tuovinen OH, Puhakka JA, Plumb JJ, Kaksonen AH (2010) Acid bioleaching of solid waste materials from copper, steel and recycling industries. Hydrometallurgy 103:74–79
Wang J, Bai J, Xu J, Liang B (2009) Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J Hazard Mater 172:1100–1105
Xiang Y, Wu P, Zhu N, Zhang T, Liu W, Wu J, Li P (2010) Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. J Hazard Mater 184:812–818
Yang T, Xu Z, Wen J, Yang L (2009) Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 97:29–32
Yang Y, Chen S, Li S, Chen M, Chen H, Liu B (2014) Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect. J Biotechnol 173:24–30