Bioinspired structural materials

Nature Materials - Tập 14 Số 1 - Trang 23-36 - 2015
Ulrike G. K. Wegst1, Hao Bai2, Eduardo Saiz3, Antoni P. Tomsia2, Robert O. Ritchie2
1Thayer School of Engineering, Dartmouth College, Hanover, 03755, New Hampshire, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
3Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, SW7 2AZ, London, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ritchie, R. O. The conflicts between strength and toughness. Nature Mater. 10, 817–822 (2011).

Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, 2001).

Vincent, J. F. V. Biomimetic materials. J. Mater. Res. 23, 3140–3147 (2008).

Wegst, U. G. K. & Ashby, M. F. The mechanical efficiency of natural materials. Philos. Mag. 84, 2167–2181 (2004).

Aizenberg, J. & Fratzl, P. Biological and biomimetic materials. Adv. Mater. 21, 387–388 (2009).

Dunlop, J. W. C. & Fratzl, P. Biological composites. Annu. Rev. Mater. Res. 40, 1–24 (2010).

Li, L. & Ortiz, C. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour. Nature Mater. 13, 501–507 (2014).

Aizenberg, J. & Fratzl, P. New materials through bioinspiration and nanoscience. Adv. Funct. Mater. 23, 4398–4399 (2013).

Aizenberg, J., Fratzl, P. & Addadi, L. Preface for the special issue celebrating Stephen Weiner's 65th birthday. J. Struct. Biol. 183, 105–106 (2013).

Hart, G. L. W. Where are nature's missing structures? Nature Mater. 6, 941–945 (2007).

Ji, B. H. & Gao, H. J. Mechanical principles of biological nanocomposites. Annu. Rev. Mater. Res. 40, 77–100 (2010).

Launey, M. E., Buehler, M. J. & Ritchie, R. O. On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40, 25–53 (2010).

Meyers, M. A., Chen, P. Y., Lin, A. Y. M. & Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).

Studart, A. R. Towards high-performance bioinspired composites. Adv. Mater. 24, 5024–5044 (2012).

Wang, R. Z. & Gupta, H. S. Deformation and fracture mechanisms of bone and nacre. Annu. Rev. Mater. Res. 41, 41–73 (2011).

Weaver, J. C. et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science 336, 1275–1280 (2012).

Wegst, U. G. K. Bamboo and wood in musical instruments. Annu. Rev. Mater. Res. 38, 323–349 (2008).

Hing, K. A. Bone repair in the twenty-first century: Biology, chemistry or engineering? Phil. Trans. R. Soc. Lond. A 362, 2821–2850 (2004).

Glimcher, M. J. Bone: Nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev. Mineral. Geochem. 64, 223–282 (2006).

Jager, I. & Fratzl, P. Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79, 1737–1746 (2000).

Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Mater. 4, 612–616 (2005).

Koester, K. J., Ager, J. W. & Ritchie, R. O. The true toughness of human cortical bone measured with realistically short cracks. Nature Mater. 7, 672–677 (2008).

Nalla, R. K., Kruzic, J. J., Kinney, J. H. & Ritchie, R. O. Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials 26, 217–231 (2005).

Barthelat, F., Tang, H., Zavattieri, P. D., Li, C. M. & Espinosa, H. D. On the mechanics of mother of pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306–337 (2007).

Wang, R. Z., Suo, Z., Evans, A. G., Yao, N. & Aksay, I. A. Deformation mechanisms in nacre. J. Mater. Res. 16, 2485–2493 (2001).

Evans, A. G. et al. Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475–2484 (2001).

Li, X. D., Chang, W. C., Chao, Y. J., Wang, R. Z. & Chang, M. Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett. 4, 613–617 (2004).

Smith, B. L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999).

Song, F., Soh, A. K. & Bai, Y. L. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3623–3631 (2003).

Espinosa, H. D. et al. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nature Commun. 2, 173 (2011).

Suzuki, M. et al. An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325, 1388–1390 (2009).

Kroger, N. The molecular basis of nacre formation. Science 325, 1351–1352 (2009).

Tanner, K. E. Small but extremely tough. Science 336, 1237–1238 (2012).

Lawn, B. R., Lee, J. J. W. & Chai, H. Teeth: Among nature's most durable biocomposites. Annu. Rev. Mater. Res. 40, 55–75 (2010).

Lin, C. P., Douglas, W. H. & Erlandsen, S. L. Scanning electron-microscopy of type-I collagen at the dentin enamel junction of human teeth. J. Histochem. Cytochem. 41, 381–388 (1993).

Marshall, S. J. et al. The dentin-enamel junction — a natural, multilevel interface. J. Eur. Ceram. Soc. 23, 2897–2904 (2003).

Kruzic, J., Nalla, R. K., Kinney, J. H. & Ritchie, R. O. Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: Effect of hydration. Biomaterials 24, 5209–5221 (2003).

Imbeni, V., Kruzic, J. J., Marshall, G. W., Marshall, S. J. & Ritchie, R. O. The dentin-enamel junction and the fracture of human teeth. Nature Mater. 4, 229–232 (2005).

Kinney, J. H., Nalla, R. K., Pople, J. A., Breunig, T. M. & Ritchie, R. O. Age-related transparent root dentin: Mineral concentration, crystallite size, and mechanical properties. Biomaterials 26, 3363–3376 (2005).

Wegst, U. G. K. Bending efficiency through property gradients in bamboo, palm, and wood-based composites. J. Mech. Behav. Biomed. Mater. 4, 744–755 (2011).

Wegst, U. G. K. & Ashby, M. F. The structural efficiency of orthotropic stalks, stems and tubes. J. Mater. Sci. 42, 9005–9014 (2007).

Gehrke, N. et al. Retrosynthesis of nacre via amorphous precursor particles. Chem. Mater. 17, 6514–6516 (2005).

Oaki, K. & Imai, H. The hierarchical architecture of nacre and its mimetic material. Angew. Chem. Int. Ed. 44, 6571–6575 (2005).

Tseng, Y. H., Lin, H. Y., Liu, M. H., Chen, Y. F. & Mou, C. Y. Biomimetic synthesis of nacrelike faceted mesocrystals of ZnO-gelatin composite. J. Phys. Chem. C 113, 18053–18061 (2009).

Aizenberg, J. Crystallization in patterns: A bio-inspired approach. Adv. Mater. 16, 1295–1302 (2004).

Aizenberg, J., Muller, D. A., Grazul, J. L. & Hamann, D. R. Direct fabrication of large micropatterned single crystals. Science 299, 1205–1208 (2003).

Ethirajan, A. et al. Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process. Adv. Funct. Mater. 18, 2221–2227 (2008).

Perkin, K. K., Turner, J. L., Wooley, K. L. & Mann, S. Fabrication of hybrid nanocapsules by calcium phosphate mineralization of shell cross-linked polymer micelles and nanocages. Nano Lett. 5, 1457–1461 (2005).

Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

Pouget, E. et al. Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nature Mater. 6, 434–439 (2007).

Schnepp, Z. A. C., Gonzalez-McQuire, R. & Mann, S. Hybrid biocomposites based on calcium phosphate mineralization of self-assembled supramolecular hydrogels. Adv. Mater. 18, 1869–1872 (2006).

Watanabe, J. & Akashi, M. Novel biomineralization for hydrogels: Electrophoresis approach accelerates hydroxyapatite formation in hydrogels. Biomacromolecules 7, 3008–3011 (2006).

Kong, X. D., Cui, F. Z., Wang, X. M., Zhang, M. & Zhang, W. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. J. Cryst. Growth 270, 197–202 (2004).

Zhang, S. K. & Gonsalves, K. E. Influence of the chitosan surface profile on the nucleation and growth of calcium carbonate films. Langmuir 14, 6761–6766 (1998).

Chung, W. J., Kwon, K. Y., Song, J. & Lee, S. W. Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals. Langmuir 27, 7620–7628 (2011).

Kretlow, J. D. & Mikos, A. G. Review: Mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng. 13, 927–938 (2007).

Song, J., Malathong, V. & Bertozzi, C. R. Mineralization of synthetic polymer scaffolds: A bottom-up approach for the development of artificial bone. J. Am. Chem. Soc. 127, 3366–3372 (2005).

Ajikumar, P. K., Lakshminarayanan, R. & Valiyaveettil, S. Controlled deposition of thin films of calcium carbonate on natural and synthetic templates. Cryst. Growth. Des. 4, 331–335 (2004).

Kim, S., Ku, S. H., Lim, S. Y., Kim, J. H. & Park, C. B. Graphene-biomineral hybrid materials. Adv. Mater. 23, 2009–2014 (2011).

Zhao, B., Hu, H., Mandal, S. K. & Haddon, R. C. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 17, 3235–3241 (2005).

Song, J., Saiz, E. & Bertozzi, C. R. A new approach to mineralization of biocompatible hydrogel scaffolds: An efficient process toward 3-dimensional bonelike composites. J. Am. Chem. Soc. 125, 1236–1243 (2003).

Liu, G. et al. Three-dimensional biomimetic mineralization of dense hydrogel templates. J. Am. Chem. Soc. 131, 9937–9939 (2009).

Chen, S. F. et al. Polymer-directed formation of unusual CaCO3 pancakes with controlled surface structures. Adv. Mater. 17, 1461–1465 (2005).

Colfen, H. & Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 42, 2350–2365 (2003).

Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

Walther, A. & Muller, A. H. E. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5194–5261 (2013).

Sohoni, G. B. & Mark, J. E. Anisotropic reinforcement in elastomers containing magnetic filler particles. J. Appl. Polymer Sci. 34, 2853–2859 (1987).

Erb, R. M., Libanori, R., Rothfuchs, N. & Studart, A. R. Composites reinforced in three dimensions by using low magnetic fields. Science 335, 199–204 (2012).

Garcia-Tunon, E. et al. Designing smart particles for the assembly of complex macroscopic structures. Angew. Chem. Int. Ed. 52, 7805–7808 (2013).

Gonzenbach, U. T., Studart, A. R., Tervoort, E. & Gauckler, L. J. Ultrastable particle-stabilized foams. Angew. Chem. Int. Ed. 45, 3526–3530 (2006).

Ortiz, C. & Boyce, M. C. Materials science — Bioinspired structural materials. Science 319, 1053–1054 (2008).

Barthelat, F. & Espinosa, H. D. An experimental investigation of deformation and fracture of nacre-mother of pearl. Exp. Mech. 47, 311–324 (2007).

Kato, T. Polymer/calcium carbonate layered thin-film composites. Adv. Mater. 12, 1543–1546 (2000).

Tang, Z. Y., Kotov, N. A., Magonov, S. & Ozturk, B. Nanostructured artificial nacre. Nature Mater. 2, 413–418 (2003).

Podsiadlo, P. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 318, 80–83 (2007).

Bonderer, L. J., Studart, A. R. & Gauckler, L. J. Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069–1073 (2008).

Li, Y. Q., Yu, T., Yang, T. Y., Zheng, L. X. & Liao, K. Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv. Mater. 24, 3426–3431 (2012).

Sellinger, A. et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature 394, 256–260 (1998).

Chen, L., Ballarini, R., Kahn, H. & Heuer, A. H. Bioinspired micro-composite structure. J. Mater. Res. 22, 124–131 (2007).

Corni, I. et al. A review of experimental techniques to produce a nacre-like structure. Bioinspir. Biomim. 7, 1–23 (2012).

Espinosa, H. D., Rim, J. E., Barthelat, F. & Buehler, M. J. Merger of structure and material in nacre and bone — Perspectives on de novo biomimetic materials. Prog. Mater. Sci. 54, 1059–1100 (2009).

Clegg, W. J., Kendall, K., Alford, N. M., Button, T. W. & Birchall, J. D. A simple way to make tough ceramics. Nature 347, 455–457 (1990).

Wang, C. A., Huang, Y., Zan, Q. F., Zou, L. H. & Cai, S. Y. Control of composition and structure in laminated silicon nitride/boron nitride composites. J. Am. Ceram. Soc. 85, 2457–2461 (2002).

Deville, S., Saiz, E., Nalla, R. K. & Tomsia, A. P. Freezing as a path to build complex composites. Science 311, 515–518 (2006).

Munch, E. et al. Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008).

Liu, Q. et al. Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties. J. Alloy Comp. 585, 146–153 (2014).

Roy, S., Butz, B. & Wanner, A. Damage evolution and domain-level anisotropy in metal/ceramic composites exhibiting lamellar microstructures. Acta Materialia 58, 2300–2312 (2010).

Bouville, F. et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nature Mater. 13, 508–514 (2014).

Sen, D. & Buehler, M. J. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci. Rep. 1, 35 (2011).

Hunger, P. M., Donius, A. E. & Wegst, U. G. K. Platelets self-assemble into porous nacre during freeze casting. J. Mech. Behav. Biomed. Mater. 19, 87–93 (2013).

Duro-Royoa, J. et al. MetaMesh: A hierarchical computational model for design and fabrication of biomimetic armor surfaces. Computer-Aided Design http://dx.doi.org/10.1016/j.cad.2014.05.005 (2014).

Fu, Q. A., Saiz, E. & Tomsia, A. P. Bioinspired strong and highly porous glass scaffolds. Adv. Funct. Mater. 21, 1058–1063 (2011).

Hollister, S. J. Porous scaffold design for tissue engineering. Nature Mater. 4, 518–524 (2005).

Lewis, J. A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006).

Lewis, J. A., Smay, J. E., Stuecker, J. & Cesarano, J. Direct ink writing of three-dimensional ceramic structures. J. Am. Ceram. Soc. 89, 3599–3609 (2006).

Seerden, K. A. M. et al. Ink-jet printing of wax-based alumina suspensions. J. Am. Ceram. Soc. 84, 2514–2520 (2001).

Duoss, E. B., Twardowski, M. & Lewis, J. A. Sol–gel inks for direct-write assembly of functional oxides. Adv. Mater. 19, 3485–3489 (2007).

Pham, T. A. et al. Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists. Adv. Funct. Mater. 16, 1235–1241 (2006).

Mott, M., Song, J. H. & Evans, J. R. G. Microengineering of ceramics by direct ink-jet printing. J. Am. Ceram. Soc. 82, 1653–1658 (1999).

Griffith, M. L. & Halloran, J. W. Freeform fabrication of ceramics via stereolithography. J. Am. Ceram. Soc. 79, 2601–2608 (1996).

Smay, J. E., Gratson, G. M., Shepherd, R. F., Cesarano, J. & Lewis, J. A. Directed colloidal assembly of 3D periodic structures. Adv. Mater. 14, 1279–1283 (2002).

Villar, G., Graham, A. D. & Bayley, H. A tissue-like printed material. Science 340, 48–52 (2013).

Grunenfelder, L. K. et al. Bio-inspired impact-resistant composites. Acta Biomater. 10, 3997–4008 (2014).

Facchini, L., Magalini, E., Robotti, P. & Molinari, A. Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp. J. 15, 171–178 (2009).

Genet, M., Houmard, M., Eslava, S., Saiz, E. & Tomsia, A. P. A two-scale Weibull approach to the failure of porous ceramic structures made by robocasting: Possibilities and limits. J. Eur. Ceram. Soc. 33, 679–688 (2013).

Murr, L. E. et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Materialia 58, 1887–1894 (2010).

Mirkhalaf, M., Khayer Dastjerdi, A. & Barthelat, F. Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nature Commun. 5, 3166 (2014).

Greer, J. R. & Nix, W. D. Size dependence in mechanical properties of gold at the micron scale in the absence of strain gradients. Appl. Phys. A 90, 203–203 (2008).

Wang, J. L., Lian, J., Greer, J. R., Nix, W. D. & Kim, K. S. Size effect in contact compression of nano- and microscale pyramid structures. Acta Materialia 54, 3973–3982 (2006).

Wilhelmsson, O. et al. Intrusion-type deformation in epitaxial Ti3SiC2/TiC0.67 nanolaminates. Appl. Phys. Lett. 91, 123124 (2007).

Begley, M. R. et al. Micromechanical models to guide the development of synthetic 'brick and mortar' composites. J. Mech. Phys. Solids 60, 1545–1560 (2012).

Bosia, F., Buehler, M. J. & Pugno, N. M. Hierarchical simulations for the design of supertough nanofibers inspired by spider silk. Phys. Rev. E 82, 056103 (2010).

Cranford, S. W., Tarakanova, A., Pugno, N. M. & Buehler, M. J. Nonlinear material behaviour of spider silk yields robust webs. Nature 482, 72–91 (2012).

Dimas, L. S., Bratzel, G. H., Eylon, I. & Buehler, M. J. Tough composites inspired by mineralized natural materials: Computation, 3D printing, and testing. Adv. Funct. Mater. 23, 4629–4638 (2013).

Garcia, A. P., Pugno, N. & Buehler, M. J. Superductile, wavy silica nanostructures inspired by diatom algae. Adv. Eng. Mater. 13, B405–B414 (2011).

Wilbrink, D. V., Utz, M., Ritchie, R. O. & Begley, M. R. Scaling of strength and ductility in bioinspired brick and mortar composites. Appl. Phys. Lett. 97, 193701 (2010).

Pollock, T. M. et al. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (National Academies, 2008).

Jang, D. C., Meza, L. R., Greer, F. & Greer, J. R. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nature Mater. 12, 893–898 (2013).

Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).

Hansen, C. J. et al. Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 21, 4143–4147 (2009).

Erb, R. M., Sander, J. S., Grisch, R. & Studart, A. R. Self-shaping composites with programmable bioinspired microstructures. Nature Commun. 4, 1712 (2013).

Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).

Buckwalter, J. A., Glimcher, M. J., Cooper, R. R. & Recker, R. Bone biology.1: Structure, blood-supply, cells, matrix, and mineralization. J. Bone Joint Surg. Am. 77A, 1256–1275 (1995).

Lakes, R. Materials with structural hierarchy. Nature 361, 511–515 (1993).

Li, X. D., Xu, Z. H. & Wang, R. Z. In situ observation of nanograin rotation and deformation in nacre. Nano Lett. 6, 2301–2304 (2006).

Wegst, U. G. K., Schecter, M., Donius, A. E. & Hunger, P. M. Biomaterials by freeze casting. Phil. Trans. R. Soc. A 368, 2099–2121 (2010).

Deville, S., Saiz, E. & Tomsia, A. P. Ice-templated porous alumina structures. Acta Materialia 55, 1965–1974 (2007).

Gao, H. J., Ji, B. H., Jager, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

Ritchie, R. O. Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding. Mater. Sci. Eng. A 103, 15–28 (1988).

Evans, A. G. Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc. 72, 187–206 (1990).

Williams, J. G. & Ewing, P. D. Fracture under complex stress — the angled crack problem. Int. J. Fracture 26, 346–351 (1984).

Irwin, G. R. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957).

Rice, J. R. A path independent integral and approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968).

Bruet, B. J. F., Song, J. H., Boyce, M. C. & Ortiz, C. Materials design principles of ancient fish armour. Nature Mater. 7, 748–756 (2008).

Haghpanah, B., Chiu, S. H. & Vaziri, A. Adhesively bonded lap joints with extreme interface geometry. Int. J. Adhes. Adhes. 48, 130–138 (2014).

Suresh, S. & Mortensen, A. Functionally graded metals and metal-ceramic composites. 2: Thermomechanical behaviour. Int. Mater. Rev. 42, 85–116 (1997).

Marshall, D. B. & Cox, B. N. Integral textile ceramic structures. Annu. Rev. Mater. Res. 38, 425–443 (2008).

Haghpanah, B., Oftadeh, R., Papadopoulos, J. & Vaziri, A. Self-similar hierarchical honeycombs. Proc. R. Soc. A 469, 2156 (2013).