Bioinspired Polyethersulfone Membrane Design via Blending with Functional Polyurethane

International Journal of Polymer Science - Tập 2017 - Trang 1-10 - 2017
Mei Han1,2, Qiang Liu1,2, Baihai Su1,2, Shudong Sun1, Changsheng Zhao1
1College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
2Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China

Tóm tắt

Polyurethanes (PUs) are currently considered to be biocompatible materials but limited by a low resistance to thrombus. We therefore design a heparin-like PU (HLPU) to modify polyethersulfone (PES) membranes approaching integrated antifouling and antithrombotic properties by bioinspiration of heparin structure. Poly(vinyl pyrrolidone)-HLPU (PVP-HLPU) was synthesized via reversible addition-fragmentation chain transfer polymerization of VP using PU as a macroinitiator and then sulfonated by concentrated H2SO4. FTIR and NMR results demonstrated the successful synthesis of PVP-HLPU. By incorporation of PVP-HLPU, the cross-sectional structure of PES composite membranes altered from finger-like structure to sponge-like structure resulting in tunable permeability. The increased hydrophilicity verified by water contact angles benefited both the permeability and antifouling property. As a consequence, the composite membranes showed good blood compatibility, including decreased protein adsorption, suppressed platelet adhesion, lowered thrombin-antithrombin III generation, reduced complement activation, and prolonged clotting times. Interestingly, the PVP-capped HLPU showed better blood compatibility compared to polyethyleneglycol-capped and citric acid-capped HLPUs. The results demonstrated the enhanced antifouling and antithrombotic properties of PES hemodialysis membranes by the introduction of functional HLPUs. Also, the proposed method may forward the fabrication of hemocompatible membranes via bioinspired surface design.

Từ khóa


Tài liệu tham khảo

10.1002/jbm.a.35327

10.1016/j.biomaterials.2015.03.020

10.1002/pola.27668

10.1039/c5nr06379e

10.1016/j.actbio.2015.11.048

10.1016/j.msec.2016.04.005

10.1016/j.msec.2015.07.018

10.1016/j.biomaterials.2015.08.028

10.1016/j.eurpolymj.2009.03.013

10.1016/j.msec.2015.10.058

10.1016/j.ijbiomac.2015.12.004

10.1007/s13233-013-1028-3

10.1177/0883911515598794

10.1177/0883911508097422

10.1016/j.jbiosc.2011.05.003

10.1006/jcis.1996.0514

10.1016/j.pmatsci.2012.07.002

10.1016/j.progpolymsci.2011.05.004

10.1016/j.memsci.2014.07.030

10.1016/j.eurpolymj.2012.11.018

10.1016/j.memsci.2004.01.029

10.1016/j.memsci.2009.01.002

10.1016/S0376-7388(03)00083-8

10.1016/j.apsusc.2009.04.021

10.1016/s0168-3659(97)90013-4

10.1016/j.cis.2010.12.007

10.1016/j.progpolymsci.2008.07.006

10.1016/j.biomaterials.2011.04.011

10.1007/s12221-009-0001-4

2002, Thrombosis and Haemostasis, 88, 186

10.1002/(sici)1097-4636(19981215)42:460;611::aid-jbm1862;3.0.co;2-d

10.1016/j.biomaterials.2004.01.023

10.1016/0142-9612(92)90010-L