Bioinspired Gas‐Confined Hollow Microfiber with 2D Conducting Polymer/Graphene Skeleton for Ultrasensitive Liquid Environment Sensor

Advanced Materials Interfaces - Tập 8 Số 24 - 2021
Xuejing Zou1, Qianqian Jiang1, Xusheng Wang1, Yonglin He2, Yuqiao Chai1, Hui Ma1, Xinlei Ma2, Yapei Wang2, Mianqi Xue1
1Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2Department of Chemistry, Renmin University of China, Beijing 100872, China

Tóm tắt

AbstractDue to the strong liquid intermolecular force, feasible sensing‐detection methods in liquid environments are absent. Inspired by fish swim bladder, herein, a hollow‐structured microfiber is designed to realize high‐performance sensing in liquid environments. It composes of 2D polypyrrole (2DPPy) and reduced graphene oxide (rGO), and its wall has a porous skeleton of 2DPPy/rGO/2DPPy (2DPrG2DP). The internal cavities of porous skeleton will be filled by the liquid, while leaving a bubble inside the hollow micropipe due to the liquid surface tension, thus forming a solid/liquid/gas triple‐phase interface. This hollow microfiber transforms the unmanageable liquid‐phase sensing into gas‐phase sensing. During this process, the good mechanical strength of 2DPPy enables the high sensing operability, and the reversible gas extrusion‐withdraw process enables the high sensitivity. The hollow 2DPrG2DP microfiber‐based sensor can be potentially used to machine trouble shooting, water level monitoring, ocean current monitoring, tsunami warning, body fluid and blood monitoring, and oil transportation monitoring.

Từ khóa


Tài liệu tham khảo

10.1038/nm.3621

10.1038/s41928-018-0043-y

10.1038/s41928-019-0206-5

10.1039/C6LC01427E

10.1039/C5NR00278H

10.1038/nmat4782

10.1038/s41565-018-0112-4

10.1109/JSEN.2020.2986550

10.1038/s41563-019-0556-4

10.1002/smll.201900950

10.1016/j.carbon.2019.10.031

10.1002/adma.201804600

10.1016/j.carbon.2018.11.008

10.1039/C9TA13281C

10.1038/srep19777

10.1039/D0TA06094A

10.1002/adfm.201601735

10.1021/acsmaterialslett.0c00280

10.1002/advs.201500286

10.1002/adma.202004560

10.1002/adma.202004827

10.1016/j.carbon.2019.11.065

10.1002/adma.201702675

10.1002/adfm.201502960

10.1021/acsnano.7b02826

10.1016/j.cej.2019.03.080

10.1039/c2jm34340a

10.1016/j.carbon.2019.11.005

10.1002/admt.201800531

10.1039/C7NR05175A

10.1002/macp.201900534

10.1166/jnn.2012.5144

10.1002/pc.25177

10.1002/adma.201502511

10.1002/adfm.201707013

10.1039/C4RA07774A

10.1039/D0TA03347B

10.1021/acsami.0c19949

10.1016/j.polymer.2010.10.014

10.1016/j.sna.2020.112283

10.1038/s41467-019-13262-7

10.1016/j.nanoen.2018.12.041

10.1016/j.snb.2018.06.132

10.1038/s41551-018-0336-5

10.1038/s41551-018-0273-3

10.1016/j.nanoen.2018.11.058