Bioinformatics Analysis of Domain 1 of HCV-Core Protein: Iran
Tóm tắt
Hepatitis C virus (HCV) infection is a serious global health problem and a cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Bioinformatics software has been an effective tool to study the HCV genome as well as core domains. Our research was based on employing several bioinformatics software applications to find important mutations in domain 1 of core protein in Iranian HCV infected samples from 2006 to 2017, and an investigation of general properties, B-cell and T-cell epitopes, modification sites, and structure of domain 1. Domain 1 sequences of 188 HCV samples isolated from 2006 to 2017, Iran, were retrieved from NCBI gene bank. Using several tools, all sequences were analyzed for determination of mutations, physicochemical analysis, B-cell epitopes prediction, T-cell and CTL epitopes prediction, post modification, secondary and tertiary structure prediction. Our analysis determined several mutations in some special positions (70, 90, 91, and 110) that are associated with HCC and hepatocarcinogenesis, efficacy of triple therapy and sustained virological response, and interaction between core and CCR6. Several B-cell, T-cell, and CTL epitopes were recognized. Secondary and tertiary structures were mapped fordomain1 and core proteins. Our study, as a first report, offered inclusive data about frequent mutation in HCV-core gene domain 1 in Iranian sequences that can provide helpful analysis on structure and function of domain 1 of the core gene.
Tài liệu tham khảo
Aghasadeghi M, Sadat S, Budkowska A, Khabiri A, Amini S, Bahramali G et al (2006) Evaluation of a native preparation of HCV core protein (2-122) for potential applications in immunization, diagnosis and mAb production. Iran J Public Health 35(1):1–10
Ajorloo M, Bamdad T, Hashempour T, Alborzi AM, Mozhgani SHR, Asadi R et al (2015) Detection of specific antibodies to HCV-ARF/CORE + 1 protein in cirrhotic and non-cirrhotic patients with hepatitis C: a possible association with progressive fibrosis. Arch Iran Med AIM 18(5):304–307
Akuta N, Suzuki F, Kawamura Y, Yatsuji H, Sezaki H, Suzuki Y et al (2007) Amino acid substitutions in the hepatitis C virus core region are the important predictor of hepatocarcinogenesis. Hepatology 46(5):1357–1364
Akuta N, Suzuki F, Hirakawa M, Kawamura Y, Yatsuji H, Sezaki H et al (2010) Amino acid substitution in hepatitis C virus core region and genetic variation near the interleukin 28B gene predict viral response to telaprevir with peginterferon and ribavirin. Hepatology 52(2):421–429
Akuta N, Suzuki F, Hirakawa M, Kawamura Y, Sezaki H, Suzuki Y et al (2011) Amino acid substitutions in hepatitis C virus core region predict hepatocarcinogenesis following eradication of HCV RNA by antiviral therapy. J Med Virol 83(6):1016–1022
Alborzi AM, Bamdad T, Davoodian P, Hashempoor T, Nejatizadeh AA, Moayedi J (2015) Insights into the role of HCV Plus-/Minus strand RNA, IFN-γ and IL-29 in relapse outcome in patients infected with HCV. Asian Pac J Allergy Immunol 33(3):173–181
Alborzi A, Hashempour T, Moayedi J, Musavi Z, Pouladfar G, Merat S (2017) Role of serum level and genetic variation of IL-28B in interferon responsiveness and advanced liver disease in chronic hepatitis C patients. Med Microbiol Immunol 206(2):165–174
Alestig E, Arnholm B, Eilard A, Lagging M, Nilsson S, Norkrans G et al (2011) Core mutations, IL28B polymorphisms and response to peginterferon/ribavirin treatment in Swedish patients with hepatitis C virus genotype 1 infection. BMC Infect Dis 11(1):124
Arashkia A, Rouhvand F, Memarnejadian A, Alizadeh S, Motevalli F, Ebrahimi M (2011) Immunoinformatics modeling, construction of DNA plasmids Carrying CTL epitopes of hepatitis C virus and their preliminary immunological analysis. Iran J Med Microbiol 4(4):30–40
Atapour A, Mokarram P, MostafaviPour Z, Hosseini SY, Ghasemi Y, Mohammadi S et al (2018) Designing a fusion protein vaccine against HCV: an in silico approach. Int J Peptide Res Ther. https://doi.org/10.1007/s10989-018-9735-4
Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: A comprehensive scoring function for model quality assessment. Proteins 71(1):261–277
Bhasin M, Raghava G (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22(23–24):3195–3204
Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites1. J Mol Biol 294(5):1351–1362
Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649
Cashman SB, Marsden BD, Dustin LB (2014) The humoral immune response to HCV: understanding is key to vaccine development. Front Immunol 5:550
Caval V, Piver E, Ivanyi-Nagy R, Darlix J-L, Pagès J-C (2011) Packaging of HCV-RNA into lentiviral vector. Biochem Biophys Res Commun 414(4):808–813
Chauhan JS, Rao A, Raghava GP (2013) In silico platform for prediction of N-, O-and C-glycosites in eukaryotic protein sequences. PLoS ONE 8(6):e67008
Chen C-C, Hwang J-K, Yang J-M (2006) 2: Protein structure prediction server. Nucleic Acids Res 34(suppl_2):W152–W157
Chou P, Fasman GD (2009) Amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45
Cristofari G, Ivanyi-Nagy R, Gabus C, Boulant S, Lavergne JP, Penin F et al (2004) The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro. Nucleic Acids Res 32(8):2623–2631
Dehghani B, Rasooli I, Gargari SLM, Nadooshan MRJ, Owlia P, Nazarian S (2013) Immunogenicity of Salmonella enterica serovar Enteritidis virulence protein, InvH, and cross-reactivity of its antisera with Salmonella strains. Microbiol Res 168(2):84–90
Dehghani B, Rasooli I, Jalali-Nadoushan M, Owlia P, Rasooli Z (2014) Immunoprotectivity of Salmonella enterica serovar Enteritidis virulence protein, InvH, against Salmonella typhi. Iran J Basic Med Sci 17(8):560
Dehghani B, Ghasabi F, Hashempoor T, Joulaei H, Hasanshahi Z, Halaji M et al (2017) Functional and structural characterization of Ebola virus glycoprotein (1976–2015)—An in silico study. Int J Biomath 10(08):1750108
Dehghani B, Hashempour T, Zahra H (2019) Using immunoinformatics and structural approaches to design a novel HHV8 vaccine. Int J Peptide Res Ther; In Press
Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8(1):4
Emini EA, Hughes JV, Perlow D, Boger J (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55(3):836–839
Farag RE, Arafa MM, El-Etreby S, Saudy NS, Eldeek BS, El-Alfy HA et al (2013) Human leukocyte antigen class I alleles can predict response to pegylated interferon/ribavirin therapy in chronic hepatitis C Egyptian patients. Arch Iran Med 16(2):68
Ferroni P, Mascolo G, Zaninetti M, Colzani D, Pregliasco F, Pirisi M et al (1993) Identification of four epitopes in hepatitis C virus core protein. J Clin Microbiol 31(6):1586–1591
Fishman SL, Factor SH, Balestrieri C, Fan X, DiBisceglie AM, Desai SM et al (2009) Mutations in the hepatitis C virus core gene are associated with advanced liver disease and hepatocellular carcinoma. Clin Cancer Res 15(9):3205–3213
Furui Y, Hoshi Y, Murata K, Ito K, Suzuki K, Uchida S et al (2011) Prevalence of amino acid mutation in hepatitis C virus core region among Japanese volunteer blood donors. J Med Virol 83(11):1924–1929
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Springer, New York, pp. 571–607
Gededzha MP, Mphahlele MJ, Selabe SG (2014) Prediction of T-cell epitopes of hepatitis C virus genotype 5a. Virol J 11(1):187
Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11(6):681–684
Gremion C, Cerny A (2005) Hepatitis C virus and the immune system: a concise review. Rev Med Virol 15(4):235–268
Gupta R, Brunak S (2001) Prediction of glycosylation across the human proteome and the correlation to protein function. In: 2002 Biocomputing, World Scientific. pp. 310–322
Harase I, Moriyama T, Kaneko T, Kita H, Nomura M, Suzuki G et al (1995) Immune response to hepatitis C virus core protein in mice. Immunol Cell Biol 73(4):346
Hashempoor T, Bamdad T, Merat S, Janzamin E, Nemati L, Jabbari H et al (2010) Expansion of CD4+ CD25+ FoxP3+ regulatory T cells in chronic hepatitis C virus infection. Iran J Immunol 7(3):177–185
Hashempoor T, Alborzi AM, Moayedi J, Ajorloo M, Bamdad T, Sharifi AH et al (2018) A decline in anti-core + 1 antibody titer occurs in successful treatment of patients infected with hepatitis C virus. Jundishapur J Microbiol 11(2):e58294
Hashempour T, Bamdad T, Bergamini A, Lavergne JP, Haj-Sheykholeslami A, Brakier-Gingras L et al (2015) F protein increases CD4+ CD25+ T cell population in patients with chronic hepatitis C. Pathog Dis 73(4):ftv022
Horie T, Shimizu I, Horie C, Yogita S, Tashiro S, Ito S (1999) Mutations of the core gene sequence of hepatitis C virus isolated from liver tissues with hepatocellular carcinoma. Hepatol Res 13(3):240–251
Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z et al (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049
Idrees S, Ashfaq UA (2013) HCV infection and NS-3 serine protease inhibitors. Virol Mycol 2(112):2160–2161
Ivanyi-Nagy R, Kanevsky I, Gabus C, Lavergne J-P, Ficheux D, Penin F et al (2006) Analysis of hepatitis C virus RNA dimerization and core–RNA interactions. Nucleic Acids Res 34(9):2618–2633
Jazayeri SM, Carman WF (2005) Virus escape CTL or B cell epitopes? Hapat Mon 5(4):133–136
Karplus P, Schulz G (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72(4):212–213
Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4(3):363
Khorrami S, Mohammadpour H, Shahzamani K, Zarif MN, Sharifi AH, Merat S et al (2015) The relationship between HLA-G and viral loads in non-responder HCV-infected patients after combined therapy with IFN-α2α and ribavirin. Hum Immunol 76(2–3):181–186
Larsen JEP, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Re 2(1):2
Lauer GM, Walker BD (2001) Hepatitis C virus infection. N Engl J Med 345(1):41–52
Lavanchy D (2011) Evolving epidemiology of hepatitis C virus. Clin Microbiol Infect 17(2):107–115
Lechmann M, Ihlenfeldt HG, Braunschweiger I, Giers G, Jung G, Matz B et al (1996) T-and B-cell responses to different hepatitis C virus antigens in patients with chronic hepatitis C infection and in healthy anti-hepatitis C virus—positive blood donors without viremi. Hepatology 24(4):790–795
Lu W, Ou J-h (2002) Phosphorylation of hepatitis C virus core protein by protein kinase A and protein kinase C. Virology 300(1):20–30
Ma H-C, Ku Y-Y, Hsieh Y-C, Lo S-Y (2007) Characterization of the cleavage of signal peptide at the C-terminus of hepatitis C virus core protein by signal peptide peptidase. J Biomed Sci 14(1):31–41
Martro E, Valero A, Jordana-Lluch E, Saludes V, Planas R, González-Candelas F et al (2011) Hepatitis C virus sequences from different patients confirm the existence and transmissibility of subtype 2q, a rare subtype circulating in the metropolitan area of Barcelona, Spain. J Med Virol 83(5):820–826
Moattari A, Dehghani B, Khodadad N, Tavakoli F (2015) In silico functional and structural characterization of H1N1 influenza A viruses hemagglutinin, 2010–2013, Shiraz, Iran. Acta Biotheor 63(2):183–202
Moayedi J, Hashempour T, Musavi Z, Hallaji M, Ghasabi F, Haj-Sheykholeslami A et al (2018) Comparison of IL-28B favorable genotype frequency between healthy and patients infected with HCV. Sci J Ilam Univ Med Sci 26(2):28–36
Netski DM, Mosbruger T, Depla E, Maertens G, Ray SC, Hamilton RG et al (2005) Humoral immune response in acute hepatitis C virus infection. Clin Infect Dis 41(5):667–675
Neumann-Haefelin C, Blum HE, Chisari F, Thimme R (2005) T cell response in hepatitis C virus infection. J Clin Virol 32(2):75–85
Nezafat N, Dorosti H, Zarei M, Ghasemi Y (2018) Exploring dengue proteome to design an effective epitope-based vaccine against dengue virus AU—Sabetian, Soudabeh. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2018.1491890
Oehler V, Filipe A, Montserret R, Da Costa D, Brown G, Penin F et al (2012) Structural analysis of hepatitis C virus core-E1 signal peptide and requirements for cleavage of the genotype 3a signal sequence by signal peptide peptidase. J Virol 86(15):7818–7828
Ogata S, Nagano-Fujii M, Ku Y, Yoon S, Hotta H (2002) Comparative sequence analysis of the core protein and its frameshift product, the F protein, of hepatitis C virus subtype 1b strains obtained from patients with and without hepatocellular carcinoma. J Clin Microbiol 40(10):3625–3630
Okamoto K, Mori Y, Komoda Y, Okamoto T, Okochi M, Takeda M et al (2008) Intramembrane processing by signal peptide peptidase regulates the membrane localization of hepatitis C virus core protein and viral propagation. J Virol 82(17):8349–8361
Parker J, Guo D, Hodges R (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25(19):5425–5432
Pavio N, Lai MM (2003) The hepatitis C virus persistence: how to evade the immune system? J Biosci 28(3):287–304
Pene V, Hernandez C, Vauloup-Fellous C, Garaud-Aunis J, Rosenberg A (2009) Sequential processing of hepatitis C virus core protein by host cell signal peptidase and signal peptide peptidase: a reassessment. J Viral Hepat 16(10):705–715
Pirisi M, Fabris C, Toniutto P, Vitulli D, Soardo G, Falleti E et al (1995) Reactivity to B cell epitopes within hepatitis C virus core protein and hepatocellular carcinoma. Cancer Res 55(1):111–114
Polyak SJ, Klein KC, Shoji I, Miyamura T, Lingappa JR (2006) Assemble and interact: pleiotropic functions of the HCV core protein. Hepatitis C viruses: genomes and molecular biology. Horizon Bioscience, Norwich, pp. 89–119
Pourhassan A. Hepatitis C (2014) The first report in Azeri patients. Pak J Biol Sci 17(6):872–875
Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725
Sabet LP, Taheri T, Memarnejadian A, Azad TM, Asgari F, Rahimnia R et al (2014) Immunogenicity of multi-epitope DNA and peptide vaccine candidates based on core, E2, NS3 and NS5B HCV epitopes in BALB/c mice. Hepat Mon 14(10):e22215
Saeedi A, Naderi M, Tabarraie A, Kelishdi M, Ghaemi A (2014) Enhanced immune responses of a hepatitis C virus core DNA vaccine by co-inoculating interleukin-12 expressing vector in mice. Vaccine Res 1(2):29–33
Saha S, Raghava GP (2004) BcePr(ed): prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. In: Saha S, Raghava GP (eds) International conference on artificial immune systems. Springer
Saha S, Raghava G (2006a) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48
Saha S, Raghava G (2006b) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34(suppl_2):W202–W209
Samimi-Rad K, Sadeghi F, Amirzargar A, Eshraghian MR, Alavian SM, Rahimnia R (2015) Association of HLA class II alleles with hepatitis C virus clearance and persistence in thalassemia patients from Iran. J Med Virol 87(9):1565–1572
Sarvari J, Mojtahedi Z, Kuramitsu Y, Fattahi MR, Ghaderi A, Nakamura K et al (2014) Comparative proteomics of sera from HCC patients with different origins. Hepat Mon 14(1):e13103
Sefidi FJ, Keyvani H, Monavari SH, Alavian SM, Fakhim S, Bokharaei-Salim F (2013) Distribution of hepatitis C virus genotypes in Iranian chronic infected patients. Hepat Mon 13(1):e7991
Shih C-M, Chen C-M, Chen S-Y, Lee Y (1995) Modulation of the trans-suppression activity of hepatitis C virus core protein by phosphorylation. J Virol 69(2):1160–1171
Singh H, Raghava G (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12):1236–1237
Singh H, Raghava G (2003) ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics 19(8):1009–1014
Steinmann E, Brohm C, Kallis S, Bartenschlager R, Pietschmann T (2008) Efficient trans-encapsidation of hepatitis C virus RNAs into infectious virus-like particles. J Virol 82(14):7034–7046
Strosberg AD, Kota S, Takahashi V, Snyder JK, Mousseau G (2010) Core as a novel viral target for hepatitis C drugs. Viruses 2(8):1734–1751
Takahashi K, Iwata K, Matsumoto M, Matsumoto H, Nakao K, Hatahara T et al (2001) Hepatitis C virus (HCV) genotype 1b sequences from fifteen patients with hepatocellular carcinoma: the ‘progression score’revisited. Hepatol Res 20(2):161–171
Targett-Adams P, Hope G, Boulant S, McLauchlan J (2008) Maturation of hepatitis C virus core protein by signal peptide peptidase is required for virus production. J Biol Chem 283(24):16850–16859
Tokita H, Kaufmann GR, Matsubayashi M, Okuda I, Tanaka T, Harada H et al (2000) Hepatitis C virus core mutations reduce the sensitivity of a fluorescence enzyme immunoassay. J Clin Microbiol 38(9):3450–3452
Ward S, Lauer G, Isba R, Walker B, Klenerman P (2002) Cellular immune responses against hepatitis C virus: the evidence base 2002. Clin Exp Immunol 128(2):195–203
Yassin K (2001) Unraveling the mystery of liver diseases in Egypt. Jacobs Verlag, Lage