Biohybrid solar cells: Fundamentals, progress, and challenges

Elshan Musazade1, Roman A. Voloshin2, Nathan G. Brady3, Jyotirmoy Mondal3, Samaya Atashova1, Sergey K. Zharmukhamedov2,4, Irada Huseynova1, Seeram Ramakrishna5, Mohammad Mahdi Najafpour6, Jian‐Ren Shen7,8, Barry D. Bruce3,9, Suleyman I. Allakhverdiev1,2,10,4,11
1Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, Baku 1073, Azerbaijan
2Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
3Department of Biochemistry, Cellular & Molecular Biology, University of Tennessee at Knoxville, 125 Austin Peay Bldg., Knox-ville, TN 37996, USA
4Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia,
5Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 117576, Singapore
6Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
7Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing 100093, China
8Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
9Department of Microbiology, University of Tennessee at Knoxville, 125 Austin Peay Bldg., Knoxville, TN 37996, USA
10Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia
11Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow region, 141700, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Grätzel, 2009, Recent advances in sensitized mesoscopic solar cells, Acc. Chem. Res., 42, 1788, 10.1021/ar900141y

Lewis, 2006, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103

BP p.l.c., ed., BP Statistical Review of World Energy 2017, London, 2017. http://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf.

Arjunan, 2013, Review: dye sensitised solar cells, Mater. Technol., 28, 9, 10.1179/1753555712Y.0000000040

Grätzel, 2007, Photovoltaic and photoelectrochemical conversion of solar energy, Philos. Trans. A Math. Phys. Eng. Sci., 365, 993

Sekar, 2014, Recent advances in photosynthetic energy conversion, J. Photochem. Photobiol. C Photochem. Rev., 22, 19, 10.1016/j.jphotochemrev.2014.09.004

Najafpour, 2016, Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures, Chem. Rev., 116, 2886, 10.1021/acs.chemrev.5b00340

Nelson, 2006, Structure and function of photosystems I and II, Annu. Rev. Plant Biol., 57, 521, 10.1146/annurev.arplant.57.032905.105350

Green, 2000, Photovoltaics: technology overview, Energy Policy, 28, 989, 10.1016/S0301-4215(00)00086-0

Yamaguchi, 2001, Present status and prospects of photovoltaic technologies in Japan, Renew. Sustain. Energy Rev., 5, 113, 10.1016/S1364-0321(00)00013-7

Grätzel, 2001, Photoelectrochemical cells michael, Nature, 414, 338, 10.1038/35104607

Sharma, 2015, Solar cells: in research and Applications—a review, Mater. Sci. Appl., 6, 1145

Pucker, 2012, Silicon quantum dots for photovoltaics, 59

Voloshin, 2015, Photoelectrochemical cells based on photosynthetic systems: a review, Biofuel Res. J., 2, 10.18331/BRJ2015.2.2.4

Voloshin, 2016, Components of natural photosynthetic apparatus in solar cells, Appl. Photosynth. New Prog., 161

Rodionova, 2016, Biofuel production: challenges and opportunities, Int. J. Hydrogen Energy, 1

Hagfeldt, 2010, Dye-sensitized solar cells, Chem. Rev., 110, 6595, 10.1021/cr900356p

Dai, 2004, Dye-sensitized solar cells, from cell to module, Sol. Energy Mater. Sol. Cells (North-Holland), 125, 10.1016/j.solmat.2004.03.002

O’Regan, 1991, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737, 10.1038/353737a0

Rensmo, 1997, High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes, J. Phys. Chem. B, 101, 2598, 10.1021/jp962918b

Stergiopoulos, 2003, Photoelectrochemistry at SnO2 particulate fractal electrodes sensitized by a ruthenium complex, J. Photochem. Photobiol. A Chem., 155, 163, 10.1016/S1010-6030(02)00394-5

Bella, 2015, Aqueous dye-sensitized solar cells, Chem. Soc. Rev., 44, 3431, 10.1039/C4CS00456F

Polo, 2004, N.Y. Murakami Iha, Metal complex sensitizers in dye-sensitized solar cells, Coord. Chem. Rev., 248, 1343, 10.1016/j.ccr.2004.04.013

Grätzel, 2003, Dye-sensitized solar cells, J. Photochem. Photobiol. C Photochem. Rev., 4, 145, 10.1016/S1389-5567(03)00026-1

Islam, 2003, Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells, J. Photochem. Photobiol. A Chem., 158, 131, 10.1016/S1010-6030(03)00027-3

Cherian, 2000, Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2, J. Phys. Chem. B, 104, 3624, 10.1021/jp994459v

Kay, 1993, Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins, J. Phys. Chem., 97, 6272, 10.1021/j100125a029

Komori, 2003, Dye-sensitized solar cell with the near-infrared sensitization of aluminum phthalocyanine, J. Porphyr. Phthalocyanines, 7, 131, 10.1142/S1088424603000185

Hara, 2001, A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%, Chem. Commun., 0, 569, 10.1039/b010058g

Hara, 2003, Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells, New J. Chem., 27, 783, 10.1039/b300694h

Horiuchi, 2004, High efficiency of dye-sensitized solar cells based on metal-free indoline dyes, J. Am. Chem. Soc., 126, 12218, 10.1021/ja0488277

Gebeyehu, 2018, Solid-state organic/inorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes, 271

Ferrere, 2002, New perylenes for dye sensitization of TiO2, New J. Chem., 26, 1155, 10.1039/b203260k

Nazeeruddin, 1993, Conversion of light to electricity by cis-X2Bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc., 115, 6382, 10.1021/ja00067a063

Chiba, 2006, Dye-sensitized solar cells with conversion efficiency of 11.1%, Jpn. J. Appl. Phys., 45, L638, 10.1143/JJAP.45.L638

Grätzel, 1999, Mesoporous oxide junctions and nanostructured solar cells, Curr. Opin. Colloid Interface Sci., 4, 314, 10.1016/S1359-0294(99)90013-4

Yamazaki, 2007, Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells, Sol. Energy, 81, 512, 10.1016/j.solener.2006.08.003

Cherepy, 1997, Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO 2 nanocrystalline electrode, J. Phys. Chem. B, 101, 9342, 10.1021/jp972197w

Hao, 2006, Natural dyes as photosensitizers for dye-sensitized solar cell, Sol. Energy (Pergamon), 209, 10.1016/j.solener.2005.05.009

Zhang, 2008, Betalain pigments for dye-sensitized solar cells, J. Photochem. Photobiol. A Chem., 195, 72, 10.1016/j.jphotochem.2007.07.038

Bessho, 2010, Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins, Angew. Chem. Int. Ed. Engl., 49, 6646, 10.1002/anie.201002118

Zeng, 2010, Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks, Chem. Mater., 22, 1915, 10.1021/cm9036988

Fan, 2017, Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review, Mater. Horizons, 4, 319, 10.1039/C6MH00511J

Chang, 2014, Improved performance for dye-sensitized solar cells using a compact TiO2 layer grown by sputtering, Int. J. Photoenergy, 2014, 1

Park, 2015, Performance enhancement of dye-sensitized solar cell with a TiCl4-treated TiO2 compact layer, Electron. Mater. Lett., 11, 271, 10.1007/s13391-014-4130-6

Xu, 2015, g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells, J. Power Sources, 274, 77, 10.1016/j.jpowsour.2014.10.033

Lee, 2017, Ultra-high aspect ratio titania nanoflakes for dye-sensitized solar cells, Appl. Surf. Sci., 426, 1263, 10.1016/j.apsusc.2017.08.190

Guo, 2017, Hierarchical TiO2 submicrorods improve the photovoltaic performance of dye-sensitized solar cells, ACS Sustain. Chem. Eng., 5, 1315, 10.1021/acssuschemeng.6b01671

Martineau, 2012, 3

Blankenship, 2010, Early evolution of photosynthesis, Plant Physiol., 154, 434, 10.1104/pp.110.161687

Georgianna, 2012, Exploiting diversity and synthetic biology for the production of algal biofuels, Nature, 488, 329, 10.1038/nature11479

Gust, 2009, Solar fuels via artificial photosynthesis, Acc. Chem. Res., 42, 1890, 10.1021/ar900209b

Work, 2012, Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels, Curr. Opin. Biotechnol., 23, 290, 10.1016/j.copbio.2011.11.022

Voloshin, 2016, Review: biofuel production from plant and algal biomass, Int. J. Hydrogen Energy, 41, 17257, 10.1016/j.ijhydene.2016.07.084

Barber, 2013, From natural to artificial photosynthesis, J. R. Soc. Interface, 10, 10.1098/rsif.2012.0984

Nath, 2015, Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies, Photosynth. Res., 126, 237, 10.1007/s11120-015-0139-4

Sekar, 2014, Recent advances in photosynthetic energy conversion, J. Photochem. Photobiol. C Photochem. Rev., 22, 19, 10.1016/j.jphotochemrev.2014.09.004

Raymond, 2008, The origin of the oxygen-evolving complex, Coord. Chem. Rev., 252, 377, 10.1016/j.ccr.2007.08.026

Vothknecht, 1541, Biogenesis and origin of thylakoid membranes, Biochim. Biophys. Acta Mol. Cell Res., 2001, 91

Bína, 2014, Supramolecular organization of photosynthetic membrane proteins in the chlorosome-containing bacterium Chloroflexus aurantiacus, Photosynth. Res., 122, 13, 10.1007/s11120-014-0006-8

Stadnichuk, 1807, Far-red light-regulated efficient energy transfer from phycobilisomes to photosystem i in the red microalga Galdieria sulphuraria and photosystems-related heterogeneity of phycobilisome population, Biochim. Biophys. Acta Bioenergy, 2011, 227

Green, 2003

Beale, 1999, Enzymes of chlorophyll biosynthesis, Photosynth. Res., 60, 43, 10.1023/A:1006297731456

Allakhverdiev, 2016, Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria, Biochememistry, 81, 201

Scheer, 1991

Chen, 2011, Expanding the solar spectrum used by photosynthesis, Trends Plant Sci., 16, 427, 10.1016/j.tplants.2011.03.011

Manning, 1943, Chlorophyll D, a green pigment of red algae, J. Biol. Chem., 151, 1, 10.1016/S0021-9258(18)72109-1

Chen, 2010, A red-shifted chlorophyll, Science, 329, 1318, 10.1126/science.1191127

2006

Helfrich, 2003, Chlorophylls of the c family: absolute configuration and inhibition of NADPH: protochlorophyllide oxidoreductase, Biochim. Biophys. Acta Bioenergy, 1605, 97, 10.1016/S0005-2728(03)00081-1

Sandmann, 2009, Evolution of carotene desaturation: the complication of a simple pathway, Arch. Biochem. Biophys., 483, 169, 10.1016/j.abb.2008.10.004

Blankenship, 2008

Seibert, 1988, Spectral, photophysical, and stability properties of isolated photosystem II reaction center, Plant Physiol., 87, 303, 10.1104/pp.87.2.303

Lukashev, 2007, Electron phototransfer between photosynthetic reaction centers of the bacteria Rhodobacter sphaeroides and semiconductor mesoporous TiO2 films, Dokl. Biochem. Biophys., 415, 211, 10.1134/S1607672907040138

Najafpour, 2015, The biological water-oxidizing complex at the nano-bio interface, Trends Plant Sci., 20, 559, 10.1016/j.tplants.2015.06.005

Dean, 2014, Measuring light-dependent proton translocation in isolated thylakoids, J. Lab. Chem. Educ., 2, 33

Baniulis, 2008, Structure-function of the cytochrome b6f complex, Photochem. Photobiol., 84, 1349, 10.1111/j.1751-1097.2008.00444.x

Kato, 2014, Protein film photoelectrochemistry of the water oxidation enzyme photosystem II, Chem. Soc. Rev., 43, 6485, 10.1039/C4CS00031E

Tikhonov, 2013, PH-Dependent regulation of electron transport and ATP synthesis in chloroplasts, Photosynth. Res., 116, 511, 10.1007/s11120-013-9845-y

Yanyushin, 2005, New class of bacterial membrane oxidoreductases, Biochemistry, 44, 10037, 10.1021/bi047267l

Berthold, 1981, A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. EPR and electron-transport properties, FEBS Lett., 134, 231, 10.1016/0014-5793(81)80608-4

Yoder, 2002, Structure and function in the isolated reaction center complex of Photosystem II: Energy and charge transfer dynamics and mechanism, Photosynth. Res., 72, 147, 10.1023/A:1016180616774

Fey, 2008, Isolation of highly active photosystem II core complexes with a His-tagged Cyt b559 subunit from transplastomic tobacco plants, Biochim. Biophys. Acta Bioenergy, 1777, 1501, 10.1016/j.bbabio.2008.09.012

Shen, 2011, Purification and crystallization of oxygen-evolving photosystem II core complex from thermophilic cyanobacteria, Photosynth. Res. Protoc., 41, 10.1007/978-1-60761-925-3_5

Mizoguchi, 2012, Isolation and pigment composition of the reaction centers from purple photosynthetic bacterium Rhodopseudomonas palustris species, Biochim. Biophys. Acta Bioenergy, 1817, 395, 10.1016/j.bbabio.2011.12.001

Ben-Shem, 2004, Evolution of photosystem I − From symmetry through pseudosymmetry to asymmetry, FEBS Lett., 564, 274, 10.1016/S0014-5793(04)00360-6

Frolov, 2005, Fabrication of a photoelectronic device by direct chemical binding of the photosynthetic reaction center protein to metal surfaces, Adv. Mater., 17, 2434, 10.1002/adma.200500295

Kato, 2012, Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous Indium–Tin oxide electrode, J. Am. Chem. Soc., 134, 8332, 10.1021/ja301488d

Leblanc, 2012, Enhanced photocurrents of photosystem i films on p-doped silicon, Adv. Mater., 24, 5959, 10.1002/adma.201202794

Shah, 2015, Linker-free deposition and adhesion of photosystem i onto nanostructured TiO2 for biohybrid photoelectrochemical cells, Langmuir, 31, 1675, 10.1021/la503776b

Voloshin, 2017, Optimization and characterization of TiO2-based solar cell design using diverse plant pigments, Int. J. Hydrogen Energy, 42, 8576, 10.1016/j.ijhydene.2016.11.148

Badura, 2008, Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels, Electroanalysis, 20, 1043, 10.1002/elan.200804191

Badura, 2011, Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels, Energy Environ. Sci., 4, 2435, 10.1039/c1ee01126j

Calkins, 2013, High photo-electrochemical activity of thylakoid-carbon nanotube composites for photosynthetic energy conversion, Energy Environ. Sci., 6, 1891, 10.1039/c3ee40634b

Das, 2004, Integration of photosynthetic protein molecular complexes in solid-state electronic devices, Nano Lett., 4, 1079, 10.1021/nl049579f

Efrati, 2013, Cytochrome c-coupled photosystem I and photosystem II (PSI/PSII) photo-bioelectrochemical cells, Energy Environ. Sci., 6, 2950, 10.1039/c3ee41568f

Kothe, 2013, Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a z-scheme mimic for biophotovoltaic applications, Angew. Chemie Int. Ed., 52, 14233, 10.1002/anie.201303671

Rao, 1990, Photoelectrochemical responses of photosystem II particles immobilized on dye-derivatized TiO2 films, J. Photochem. Photobiol. B Biol., 5, 379, 10.1016/1011-1344(90)85052-X

Yehezkeli, 2012, Integrated photosystem II-based photo-bioelectrochemical cells, Nat. Commun., 3, 742, 10.1038/ncomms1741

Yehezkeli, 2010, Generation of photocurrents by bis-aniline-cross-linked Pt nanoparticle/photosystem I composites on electrodes, J. Phys. Chem. B, 114, 14383, 10.1021/jp100454u

Badura, 2006, Light-driven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device, Photochem. Photobiol., 82, 1385, 10.1562/2006-07-14-RC-969

Iwuchukwu, 2010, Self-organized photosynthetic nanoparticle for cell-free hydrogen production, Nat. Nanotechnol., 5, 73, 10.1038/nnano.2009.315

Maly, 2005, Monolayers of photosystem II on gold electrodes with enhanced sensor response-effect of porosity and protein layer arrangement, Anal. Bioanal. Chem., 381, 1558, 10.1007/s00216-005-3149-9

Brinkert, 2016, Photocurrents from photosystem II in a metal oxide hybrid system: electron transfer pathways, Biochim. Biophys. Acta Bioenergy, 1857, 1497, 10.1016/j.bbabio.2016.03.004

Lam, 2005, Biological self-assembled monolayers for photosynthetic solar cell and sensing applications, 13th Int. Conf. Solid-State Sensors, Actuators Microsystems, 2005. Dig. Tech. Pap. TRANSDUCERS ’05., IEEE, 1772, 10.1109/SENSOR.2005.1497436

Ferber, 1998, An electrical model of the dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells, 53, 29, 10.1016/S0927-0248(98)00005-1

Mershin, 2012, Self-assembled photosystem-I biophotovoltaics on nanostructured TiO(2)and ZnO, Sci. Rep., 2, 234, 10.1038/srep00234

Yang, 2014, Characteristics of the dye-sensitized solar cells using TiO2 nanotubes treated with TiCl4, Materials (Basel), 7, 3522, 10.3390/ma7053522

Lee, 2011, Ionic liquid based electrolytes for dye-sensitized solar cells, 631

Allen, 1976

Trammell, 2004, Orientated binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers, Biosens. Bioelectron., 19, 1649, 10.1016/j.bios.2003.12.034

Lebedev, 2006, Conductive wiring of immobilized photosynthetic reaction center to electrode by cytochrome c, J. Am. Chem. Soc., 128, 12044, 10.1021/ja063367y

Lebedev, 2008, Increasing efficiency of photoelectronic conversion by encapsulation of photosynthetic reaction center proteins in arrayed carbon nanotube electrode, Langmuir, 24, 8871, 10.1021/la8011348

Trammell, 2006, Effect of protein orientation on electron transfer between photosynthetic reaction centers and carbon electrodes, Biosens. Bioelectron., 21, 1023, 10.1016/j.bios.2005.03.015

Faulkner, 2008, Rapid assembly of photosystem I monolayers on gold electrodes, Langmuir, 24, 8409, 10.1021/la800670b

Ciesielski, 2010, Photosystem I – based biohybrid photoelectrochemical cells, Bioresour. Technol., 101, 3047, 10.1016/j.biortech.2009.12.045

Gizzie, 2015, Photosystem I-polyaniline/TiO2 solid-state solar cells: simple devices for biohybrid solar energy conversion, Energy Environ. Sci., 8, 3572, 10.1039/C5EE03008K

O’Neill, 2005, Spectroscopy and photochemistry of spinach photosystem I entrapped and stabilized in a hybrid organosilicate glass, Chem. Mater., 17, 2654, 10.1021/cm047763w

Yu, 2015, Enhanced photocurrent production by bio-dyes of photosynthetic macromolecules on designed TiO2 film, Sci. Rep., 5, 9375, 10.1038/srep09375

Terasaki, 2006, Fabrication of novel photosystem I-gold nanoparticle hybrids and their photocurrent enhancement, Thin Solid Films, 499, 153, 10.1016/j.tsf.2005.07.050

Terasaki, 2009, Plugging a molecular wire into photosystem I: Reconstitution of the photoelectric conversion system on a gold electrode, Angew. Chemie Int. Ed., 48, 1585, 10.1002/anie.200805748

Terasaki, 2008, Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode, Thin Solid Films, 516, 2553, 10.1016/j.tsf.2007.04.127

Noji, 2011, Photosystem II–gold nanoparticle conjugate as a nanodevice for the development of artificial light-driven water-splitting systems, J. Phys. Chem. Lett., 2, 2448, 10.1021/jz201172y

Miyachi, 2017, Photocurrent generation of reconstituted photosystem II on a self-assembled gold film, Langmuir, 33, 1351, 10.1021/acs.langmuir.6b03499

Li, 2016, Integrating photosystem II into a porous TiO2 nanotube network toward highly efficient photo-bioelectrochemical cells, J. Mater. Chem. A, 4, 12197, 10.1039/C6TA04964H

Kavadiya, 2016, Directed assembly of the thylakoid membrane on nanostructured TiO2 for a photo-electrochemical cell, Nanoscale, 8, 1868, 10.1039/C5NR08178E

Bedford, 2011, Immobilization of stable thylakoid vesicles in conductive nanofibers by electrospinning, Biomacromolecules, 12, 778, 10.1021/bm101386w

Yehezkeli, 2013, Photosystem i (PSI)/Photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents, Small, 9, 2970, 10.1002/smll.201300051

Allen, 1987, Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors, Proc. Natl. Acad. Sci. U. S. A., 84, 5730, 10.1073/pnas.84.16.5730

Nguyen, 2014, Growing green electricity: progress and strategies for use of Photosystem i for sustainable photovoltaic energy conversion, Biochim. Biophys. Acta Bioenergy, 1837, 1553, 10.1016/j.bbabio.2013.12.013

Esper, 2006, Photosynthesis as a power supply for (bio-)hydrogen production, Trends Plant Sci., 11, 543, 10.1016/j.tplants.2006.09.001

Vittadello, 2010, Photoelectron generation by photosystem II core complexes tethered to gold surfaces, ChemSusChem, 3, 471, 10.1002/cssc.200900255

Carpentier, 1987, The photosynthetic partial reactions involved in photoelectrochemical current generation by thylakoid mebranes, Biotechnol. Lett., 9, 111, 10.1007/BF01032748

Maksimov, 2013, Photophysical properties of hybrid complexes of quantum dots and reaction centers of purple photosynthetic bacteria Rhodobacter sphaeroides adsorbed on crystalline mesoporous TiO2 films, Nanotechnol. Russ., 8, 423, 10.1134/S1995078013040095

Sekar, 2014, Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells, Phys. Chem. Chem. Phys., 16, 7862, 10.1039/c4cp00494a

Frolov, 2008, Fabrication of oriented multilayers of photosystem I proteins on solid surfaces by auto-metallization, Adv. Mater., 20, 263, 10.1002/adma.200701474

Hochuli, 1987, New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues, J. Chromatogr. A, 411, 177, 10.1016/S0021-9673(00)93969-4

Kato, 2013, Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation, J. Am. Chem. Soc., 135, 10610, 10.1021/ja404699h

Simmerman, 2015, Engineering photosystem i complexes with metal oxide binding peptides for bioelectronic applications, Bioconjugate Chem., 26, 2097, 10.1021/acs.bioconjchem.5b00374

Demetriou, 1988, Photochemistry in the isolated Photosystem II reaction-centre core complex, Biochem. J., 252, 921, 10.1042/bj2520921

Mula, 2012, Incorporation of a high potential quinone reveals that electron transfer in Photosystem I becomes highly asymmetric at low temperature, Photochem. Photobiol. Sci., 11, 946, 10.1039/c2pp05340c

Kiley, 2005, Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time, PLoS Biol., 3, 1180, 10.1371/journal.pbio.0030230

Allakhverdiev, 1996, Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose, J. Photochem. Photobiol. B Biol., 34, 149, 10.1016/1011-1344(95)07276-4

Ito, 2007, Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells, Prog. Photovolt. Res. Appl., 15, 603, 10.1002/pip.768

Huang, 2003, Nano-precision replication of natural cellulosic substances by metal oxides, J. Am. Chem. Soc., 125, 11834, 10.1021/ja037419k

Tian, 2003, Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs, Nat. Mater., 2, 159, 10.1038/nmat838

Yune, 2012, A study of TiO2 binder-free paste prepared for low temperature dye-sensitized solar cells, J. Mater. Res., 28, 488, 10.1557/jmr.2012.354

Lu, 2005, Photoelectric performance of bacteria photosynthetic proteins entrapped on tailored mesoporous WO3-TiO2 films, Langmuir, 21, 4071, 10.1021/la0470129

Wu, 2011, Anodic deposition of ultrathin TiO2 film with blocking layer and anchoring layer for dye-sensitized solar cells, J. Electrochem. Soc., 159, B80, 10.1149/2.061201jes

An, 2010, Aerosol-chemical vapor deposition method for synthesis of nanostructured metal oxide thin films with controlled morphology, J. Phys. Chem. Lett., 1, 249, 10.1021/jz900156d

Nusbaumer, 2003, An alternative efficient redox couple for the dye-sensitized solar cell system, Chem. A Eur. J., 9, 3756, 10.1002/chem.200204577