Biohybrid solar cells: Fundamentals, progress, and challenges
Tóm tắt
Từ khóa
Tài liệu tham khảo
Grätzel, 2009, Recent advances in sensitized mesoscopic solar cells, Acc. Chem. Res., 42, 1788, 10.1021/ar900141y
Lewis, 2006, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103
BP p.l.c., ed., BP Statistical Review of World Energy 2017, London, 2017. http://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf.
Arjunan, 2013, Review: dye sensitised solar cells, Mater. Technol., 28, 9, 10.1179/1753555712Y.0000000040
Grätzel, 2007, Photovoltaic and photoelectrochemical conversion of solar energy, Philos. Trans. A Math. Phys. Eng. Sci., 365, 993
Sekar, 2014, Recent advances in photosynthetic energy conversion, J. Photochem. Photobiol. C Photochem. Rev., 22, 19, 10.1016/j.jphotochemrev.2014.09.004
Najafpour, 2016, Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures, Chem. Rev., 116, 2886, 10.1021/acs.chemrev.5b00340
Nelson, 2006, Structure and function of photosystems I and II, Annu. Rev. Plant Biol., 57, 521, 10.1146/annurev.arplant.57.032905.105350
Green, 2000, Photovoltaics: technology overview, Energy Policy, 28, 989, 10.1016/S0301-4215(00)00086-0
Yamaguchi, 2001, Present status and prospects of photovoltaic technologies in Japan, Renew. Sustain. Energy Rev., 5, 113, 10.1016/S1364-0321(00)00013-7
Sharma, 2015, Solar cells: in research and Applications—a review, Mater. Sci. Appl., 6, 1145
Pucker, 2012, Silicon quantum dots for photovoltaics, 59
Voloshin, 2015, Photoelectrochemical cells based on photosynthetic systems: a review, Biofuel Res. J., 2, 10.18331/BRJ2015.2.2.4
Voloshin, 2016, Components of natural photosynthetic apparatus in solar cells, Appl. Photosynth. New Prog., 161
Rodionova, 2016, Biofuel production: challenges and opportunities, Int. J. Hydrogen Energy, 1
Dai, 2004, Dye-sensitized solar cells, from cell to module, Sol. Energy Mater. Sol. Cells (North-Holland), 125, 10.1016/j.solmat.2004.03.002
O’Regan, 1991, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737, 10.1038/353737a0
Rensmo, 1997, High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes, J. Phys. Chem. B, 101, 2598, 10.1021/jp962918b
Stergiopoulos, 2003, Photoelectrochemistry at SnO2 particulate fractal electrodes sensitized by a ruthenium complex, J. Photochem. Photobiol. A Chem., 155, 163, 10.1016/S1010-6030(02)00394-5
Polo, 2004, N.Y. Murakami Iha, Metal complex sensitizers in dye-sensitized solar cells, Coord. Chem. Rev., 248, 1343, 10.1016/j.ccr.2004.04.013
Grätzel, 2003, Dye-sensitized solar cells, J. Photochem. Photobiol. C Photochem. Rev., 4, 145, 10.1016/S1389-5567(03)00026-1
Islam, 2003, Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells, J. Photochem. Photobiol. A Chem., 158, 131, 10.1016/S1010-6030(03)00027-3
Cherian, 2000, Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2, J. Phys. Chem. B, 104, 3624, 10.1021/jp994459v
Kay, 1993, Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins, J. Phys. Chem., 97, 6272, 10.1021/j100125a029
Komori, 2003, Dye-sensitized solar cell with the near-infrared sensitization of aluminum phthalocyanine, J. Porphyr. Phthalocyanines, 7, 131, 10.1142/S1088424603000185
Hara, 2001, A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%, Chem. Commun., 0, 569, 10.1039/b010058g
Hara, 2003, Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells, New J. Chem., 27, 783, 10.1039/b300694h
Horiuchi, 2004, High efficiency of dye-sensitized solar cells based on metal-free indoline dyes, J. Am. Chem. Soc., 126, 12218, 10.1021/ja0488277
Gebeyehu, 2018, Solid-state organic/inorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes, 271
Ferrere, 2002, New perylenes for dye sensitization of TiO2, New J. Chem., 26, 1155, 10.1039/b203260k
Nazeeruddin, 1993, Conversion of light to electricity by cis-X2Bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc., 115, 6382, 10.1021/ja00067a063
Chiba, 2006, Dye-sensitized solar cells with conversion efficiency of 11.1%, Jpn. J. Appl. Phys., 45, L638, 10.1143/JJAP.45.L638
Grätzel, 1999, Mesoporous oxide junctions and nanostructured solar cells, Curr. Opin. Colloid Interface Sci., 4, 314, 10.1016/S1359-0294(99)90013-4
Yamazaki, 2007, Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells, Sol. Energy, 81, 512, 10.1016/j.solener.2006.08.003
Cherepy, 1997, Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO 2 nanocrystalline electrode, J. Phys. Chem. B, 101, 9342, 10.1021/jp972197w
Hao, 2006, Natural dyes as photosensitizers for dye-sensitized solar cell, Sol. Energy (Pergamon), 209, 10.1016/j.solener.2005.05.009
Zhang, 2008, Betalain pigments for dye-sensitized solar cells, J. Photochem. Photobiol. A Chem., 195, 72, 10.1016/j.jphotochem.2007.07.038
Bessho, 2010, Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins, Angew. Chem. Int. Ed. Engl., 49, 6646, 10.1002/anie.201002118
Zeng, 2010, Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks, Chem. Mater., 22, 1915, 10.1021/cm9036988
Fan, 2017, Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review, Mater. Horizons, 4, 319, 10.1039/C6MH00511J
Chang, 2014, Improved performance for dye-sensitized solar cells using a compact TiO2 layer grown by sputtering, Int. J. Photoenergy, 2014, 1
Park, 2015, Performance enhancement of dye-sensitized solar cell with a TiCl4-treated TiO2 compact layer, Electron. Mater. Lett., 11, 271, 10.1007/s13391-014-4130-6
Xu, 2015, g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells, J. Power Sources, 274, 77, 10.1016/j.jpowsour.2014.10.033
Lee, 2017, Ultra-high aspect ratio titania nanoflakes for dye-sensitized solar cells, Appl. Surf. Sci., 426, 1263, 10.1016/j.apsusc.2017.08.190
Guo, 2017, Hierarchical TiO2 submicrorods improve the photovoltaic performance of dye-sensitized solar cells, ACS Sustain. Chem. Eng., 5, 1315, 10.1021/acssuschemeng.6b01671
Martineau, 2012, 3
Blankenship, 2010, Early evolution of photosynthesis, Plant Physiol., 154, 434, 10.1104/pp.110.161687
Georgianna, 2012, Exploiting diversity and synthetic biology for the production of algal biofuels, Nature, 488, 329, 10.1038/nature11479
Work, 2012, Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels, Curr. Opin. Biotechnol., 23, 290, 10.1016/j.copbio.2011.11.022
Voloshin, 2016, Review: biofuel production from plant and algal biomass, Int. J. Hydrogen Energy, 41, 17257, 10.1016/j.ijhydene.2016.07.084
Barber, 2013, From natural to artificial photosynthesis, J. R. Soc. Interface, 10, 10.1098/rsif.2012.0984
Nath, 2015, Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies, Photosynth. Res., 126, 237, 10.1007/s11120-015-0139-4
Sekar, 2014, Recent advances in photosynthetic energy conversion, J. Photochem. Photobiol. C Photochem. Rev., 22, 19, 10.1016/j.jphotochemrev.2014.09.004
Raymond, 2008, The origin of the oxygen-evolving complex, Coord. Chem. Rev., 252, 377, 10.1016/j.ccr.2007.08.026
Vothknecht, 1541, Biogenesis and origin of thylakoid membranes, Biochim. Biophys. Acta Mol. Cell Res., 2001, 91
Bína, 2014, Supramolecular organization of photosynthetic membrane proteins in the chlorosome-containing bacterium Chloroflexus aurantiacus, Photosynth. Res., 122, 13, 10.1007/s11120-014-0006-8
Stadnichuk, 1807, Far-red light-regulated efficient energy transfer from phycobilisomes to photosystem i in the red microalga Galdieria sulphuraria and photosystems-related heterogeneity of phycobilisome population, Biochim. Biophys. Acta Bioenergy, 2011, 227
Green, 2003
Allakhverdiev, 2016, Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria, Biochememistry, 81, 201
Scheer, 1991
Chen, 2011, Expanding the solar spectrum used by photosynthesis, Trends Plant Sci., 16, 427, 10.1016/j.tplants.2011.03.011
Manning, 1943, Chlorophyll D, a green pigment of red algae, J. Biol. Chem., 151, 1, 10.1016/S0021-9258(18)72109-1
2006
Helfrich, 2003, Chlorophylls of the c family: absolute configuration and inhibition of NADPH: protochlorophyllide oxidoreductase, Biochim. Biophys. Acta Bioenergy, 1605, 97, 10.1016/S0005-2728(03)00081-1
Sandmann, 2009, Evolution of carotene desaturation: the complication of a simple pathway, Arch. Biochem. Biophys., 483, 169, 10.1016/j.abb.2008.10.004
Blankenship, 2008
Seibert, 1988, Spectral, photophysical, and stability properties of isolated photosystem II reaction center, Plant Physiol., 87, 303, 10.1104/pp.87.2.303
Lukashev, 2007, Electron phototransfer between photosynthetic reaction centers of the bacteria Rhodobacter sphaeroides and semiconductor mesoporous TiO2 films, Dokl. Biochem. Biophys., 415, 211, 10.1134/S1607672907040138
Najafpour, 2015, The biological water-oxidizing complex at the nano-bio interface, Trends Plant Sci., 20, 559, 10.1016/j.tplants.2015.06.005
Dean, 2014, Measuring light-dependent proton translocation in isolated thylakoids, J. Lab. Chem. Educ., 2, 33
Baniulis, 2008, Structure-function of the cytochrome b6f complex, Photochem. Photobiol., 84, 1349, 10.1111/j.1751-1097.2008.00444.x
Kato, 2014, Protein film photoelectrochemistry of the water oxidation enzyme photosystem II, Chem. Soc. Rev., 43, 6485, 10.1039/C4CS00031E
Tikhonov, 2013, PH-Dependent regulation of electron transport and ATP synthesis in chloroplasts, Photosynth. Res., 116, 511, 10.1007/s11120-013-9845-y
Yanyushin, 2005, New class of bacterial membrane oxidoreductases, Biochemistry, 44, 10037, 10.1021/bi047267l
Berthold, 1981, A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. EPR and electron-transport properties, FEBS Lett., 134, 231, 10.1016/0014-5793(81)80608-4
Yoder, 2002, Structure and function in the isolated reaction center complex of Photosystem II: Energy and charge transfer dynamics and mechanism, Photosynth. Res., 72, 147, 10.1023/A:1016180616774
Fey, 2008, Isolation of highly active photosystem II core complexes with a His-tagged Cyt b559 subunit from transplastomic tobacco plants, Biochim. Biophys. Acta Bioenergy, 1777, 1501, 10.1016/j.bbabio.2008.09.012
Shen, 2011, Purification and crystallization of oxygen-evolving photosystem II core complex from thermophilic cyanobacteria, Photosynth. Res. Protoc., 41, 10.1007/978-1-60761-925-3_5
Mizoguchi, 2012, Isolation and pigment composition of the reaction centers from purple photosynthetic bacterium Rhodopseudomonas palustris species, Biochim. Biophys. Acta Bioenergy, 1817, 395, 10.1016/j.bbabio.2011.12.001
Ben-Shem, 2004, Evolution of photosystem I − From symmetry through pseudosymmetry to asymmetry, FEBS Lett., 564, 274, 10.1016/S0014-5793(04)00360-6
Frolov, 2005, Fabrication of a photoelectronic device by direct chemical binding of the photosynthetic reaction center protein to metal surfaces, Adv. Mater., 17, 2434, 10.1002/adma.200500295
Kato, 2012, Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous Indium–Tin oxide electrode, J. Am. Chem. Soc., 134, 8332, 10.1021/ja301488d
Leblanc, 2012, Enhanced photocurrents of photosystem i films on p-doped silicon, Adv. Mater., 24, 5959, 10.1002/adma.201202794
Shah, 2015, Linker-free deposition and adhesion of photosystem i onto nanostructured TiO2 for biohybrid photoelectrochemical cells, Langmuir, 31, 1675, 10.1021/la503776b
Voloshin, 2017, Optimization and characterization of TiO2-based solar cell design using diverse plant pigments, Int. J. Hydrogen Energy, 42, 8576, 10.1016/j.ijhydene.2016.11.148
Badura, 2008, Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels, Electroanalysis, 20, 1043, 10.1002/elan.200804191
Badura, 2011, Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels, Energy Environ. Sci., 4, 2435, 10.1039/c1ee01126j
Calkins, 2013, High photo-electrochemical activity of thylakoid-carbon nanotube composites for photosynthetic energy conversion, Energy Environ. Sci., 6, 1891, 10.1039/c3ee40634b
Das, 2004, Integration of photosynthetic protein molecular complexes in solid-state electronic devices, Nano Lett., 4, 1079, 10.1021/nl049579f
Efrati, 2013, Cytochrome c-coupled photosystem I and photosystem II (PSI/PSII) photo-bioelectrochemical cells, Energy Environ. Sci., 6, 2950, 10.1039/c3ee41568f
Kothe, 2013, Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a z-scheme mimic for biophotovoltaic applications, Angew. Chemie Int. Ed., 52, 14233, 10.1002/anie.201303671
Rao, 1990, Photoelectrochemical responses of photosystem II particles immobilized on dye-derivatized TiO2 films, J. Photochem. Photobiol. B Biol., 5, 379, 10.1016/1011-1344(90)85052-X
Yehezkeli, 2012, Integrated photosystem II-based photo-bioelectrochemical cells, Nat. Commun., 3, 742, 10.1038/ncomms1741
Yehezkeli, 2010, Generation of photocurrents by bis-aniline-cross-linked Pt nanoparticle/photosystem I composites on electrodes, J. Phys. Chem. B, 114, 14383, 10.1021/jp100454u
Badura, 2006, Light-driven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device, Photochem. Photobiol., 82, 1385, 10.1562/2006-07-14-RC-969
Iwuchukwu, 2010, Self-organized photosynthetic nanoparticle for cell-free hydrogen production, Nat. Nanotechnol., 5, 73, 10.1038/nnano.2009.315
Maly, 2005, Monolayers of photosystem II on gold electrodes with enhanced sensor response-effect of porosity and protein layer arrangement, Anal. Bioanal. Chem., 381, 1558, 10.1007/s00216-005-3149-9
Brinkert, 2016, Photocurrents from photosystem II in a metal oxide hybrid system: electron transfer pathways, Biochim. Biophys. Acta Bioenergy, 1857, 1497, 10.1016/j.bbabio.2016.03.004
Lam, 2005, Biological self-assembled monolayers for photosynthetic solar cell and sensing applications, 13th Int. Conf. Solid-State Sensors, Actuators Microsystems, 2005. Dig. Tech. Pap. TRANSDUCERS ’05., IEEE, 1772, 10.1109/SENSOR.2005.1497436
Ferber, 1998, An electrical model of the dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells, 53, 29, 10.1016/S0927-0248(98)00005-1
Mershin, 2012, Self-assembled photosystem-I biophotovoltaics on nanostructured TiO(2)and ZnO, Sci. Rep., 2, 234, 10.1038/srep00234
Yang, 2014, Characteristics of the dye-sensitized solar cells using TiO2 nanotubes treated with TiCl4, Materials (Basel), 7, 3522, 10.3390/ma7053522
Lee, 2011, Ionic liquid based electrolytes for dye-sensitized solar cells, 631
Allen, 1976
Trammell, 2004, Orientated binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers, Biosens. Bioelectron., 19, 1649, 10.1016/j.bios.2003.12.034
Lebedev, 2006, Conductive wiring of immobilized photosynthetic reaction center to electrode by cytochrome c, J. Am. Chem. Soc., 128, 12044, 10.1021/ja063367y
Lebedev, 2008, Increasing efficiency of photoelectronic conversion by encapsulation of photosynthetic reaction center proteins in arrayed carbon nanotube electrode, Langmuir, 24, 8871, 10.1021/la8011348
Trammell, 2006, Effect of protein orientation on electron transfer between photosynthetic reaction centers and carbon electrodes, Biosens. Bioelectron., 21, 1023, 10.1016/j.bios.2005.03.015
Faulkner, 2008, Rapid assembly of photosystem I monolayers on gold electrodes, Langmuir, 24, 8409, 10.1021/la800670b
Ciesielski, 2010, Photosystem I – based biohybrid photoelectrochemical cells, Bioresour. Technol., 101, 3047, 10.1016/j.biortech.2009.12.045
Gizzie, 2015, Photosystem I-polyaniline/TiO2 solid-state solar cells: simple devices for biohybrid solar energy conversion, Energy Environ. Sci., 8, 3572, 10.1039/C5EE03008K
O’Neill, 2005, Spectroscopy and photochemistry of spinach photosystem I entrapped and stabilized in a hybrid organosilicate glass, Chem. Mater., 17, 2654, 10.1021/cm047763w
Yu, 2015, Enhanced photocurrent production by bio-dyes of photosynthetic macromolecules on designed TiO2 film, Sci. Rep., 5, 9375, 10.1038/srep09375
Terasaki, 2006, Fabrication of novel photosystem I-gold nanoparticle hybrids and their photocurrent enhancement, Thin Solid Films, 499, 153, 10.1016/j.tsf.2005.07.050
Terasaki, 2009, Plugging a molecular wire into photosystem I: Reconstitution of the photoelectric conversion system on a gold electrode, Angew. Chemie Int. Ed., 48, 1585, 10.1002/anie.200805748
Terasaki, 2008, Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode, Thin Solid Films, 516, 2553, 10.1016/j.tsf.2007.04.127
Noji, 2011, Photosystem II–gold nanoparticle conjugate as a nanodevice for the development of artificial light-driven water-splitting systems, J. Phys. Chem. Lett., 2, 2448, 10.1021/jz201172y
Miyachi, 2017, Photocurrent generation of reconstituted photosystem II on a self-assembled gold film, Langmuir, 33, 1351, 10.1021/acs.langmuir.6b03499
Li, 2016, Integrating photosystem II into a porous TiO2 nanotube network toward highly efficient photo-bioelectrochemical cells, J. Mater. Chem. A, 4, 12197, 10.1039/C6TA04964H
Kavadiya, 2016, Directed assembly of the thylakoid membrane on nanostructured TiO2 for a photo-electrochemical cell, Nanoscale, 8, 1868, 10.1039/C5NR08178E
Bedford, 2011, Immobilization of stable thylakoid vesicles in conductive nanofibers by electrospinning, Biomacromolecules, 12, 778, 10.1021/bm101386w
Yehezkeli, 2013, Photosystem i (PSI)/Photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents, Small, 9, 2970, 10.1002/smll.201300051
Allen, 1987, Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors, Proc. Natl. Acad. Sci. U. S. A., 84, 5730, 10.1073/pnas.84.16.5730
Nguyen, 2014, Growing green electricity: progress and strategies for use of Photosystem i for sustainable photovoltaic energy conversion, Biochim. Biophys. Acta Bioenergy, 1837, 1553, 10.1016/j.bbabio.2013.12.013
Esper, 2006, Photosynthesis as a power supply for (bio-)hydrogen production, Trends Plant Sci., 11, 543, 10.1016/j.tplants.2006.09.001
Vittadello, 2010, Photoelectron generation by photosystem II core complexes tethered to gold surfaces, ChemSusChem, 3, 471, 10.1002/cssc.200900255
Carpentier, 1987, The photosynthetic partial reactions involved in photoelectrochemical current generation by thylakoid mebranes, Biotechnol. Lett., 9, 111, 10.1007/BF01032748
Maksimov, 2013, Photophysical properties of hybrid complexes of quantum dots and reaction centers of purple photosynthetic bacteria Rhodobacter sphaeroides adsorbed on crystalline mesoporous TiO2 films, Nanotechnol. Russ., 8, 423, 10.1134/S1995078013040095
Sekar, 2014, Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells, Phys. Chem. Chem. Phys., 16, 7862, 10.1039/c4cp00494a
Frolov, 2008, Fabrication of oriented multilayers of photosystem I proteins on solid surfaces by auto-metallization, Adv. Mater., 20, 263, 10.1002/adma.200701474
Hochuli, 1987, New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues, J. Chromatogr. A, 411, 177, 10.1016/S0021-9673(00)93969-4
Kato, 2013, Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation, J. Am. Chem. Soc., 135, 10610, 10.1021/ja404699h
Simmerman, 2015, Engineering photosystem i complexes with metal oxide binding peptides for bioelectronic applications, Bioconjugate Chem., 26, 2097, 10.1021/acs.bioconjchem.5b00374
Demetriou, 1988, Photochemistry in the isolated Photosystem II reaction-centre core complex, Biochem. J., 252, 921, 10.1042/bj2520921
Mula, 2012, Incorporation of a high potential quinone reveals that electron transfer in Photosystem I becomes highly asymmetric at low temperature, Photochem. Photobiol. Sci., 11, 946, 10.1039/c2pp05340c
Kiley, 2005, Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time, PLoS Biol., 3, 1180, 10.1371/journal.pbio.0030230
Allakhverdiev, 1996, Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose, J. Photochem. Photobiol. B Biol., 34, 149, 10.1016/1011-1344(95)07276-4
Ito, 2007, Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells, Prog. Photovolt. Res. Appl., 15, 603, 10.1002/pip.768
Huang, 2003, Nano-precision replication of natural cellulosic substances by metal oxides, J. Am. Chem. Soc., 125, 11834, 10.1021/ja037419k
Tian, 2003, Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs, Nat. Mater., 2, 159, 10.1038/nmat838
Yune, 2012, A study of TiO2 binder-free paste prepared for low temperature dye-sensitized solar cells, J. Mater. Res., 28, 488, 10.1557/jmr.2012.354
Lu, 2005, Photoelectric performance of bacteria photosynthetic proteins entrapped on tailored mesoporous WO3-TiO2 films, Langmuir, 21, 4071, 10.1021/la0470129
Wu, 2011, Anodic deposition of ultrathin TiO2 film with blocking layer and anchoring layer for dye-sensitized solar cells, J. Electrochem. Soc., 159, B80, 10.1149/2.061201jes
An, 2010, Aerosol-chemical vapor deposition method for synthesis of nanostructured metal oxide thin films with controlled morphology, J. Phys. Chem. Lett., 1, 249, 10.1021/jz900156d