Bioherbicidal activity of Eruca sativa fresh shoot aqueous extract for the management of two annual weeds associating Pisum sativum plants

Bulletin of the National Research Centre - Tập 43 - Trang 1-7 - 2019
Mona Adel El-Wakeel1, Ebrahim Roushdi El-Desoki1, Salah El-Din Abd El-Ghany Ahmed1
1Botany Department, Agicultural and Biological Division, National Research Centre, Giza, Egypt

Tóm tắt

Brassica species have been established to have very high concentrations of glucosinolates, flavonols, and other secondary metabolites that achieved good results in weed management strategy. So, this study highlights how to investigate the allelopathic potential of Eruca sativa fresh shoot aqueous extract as a natural bioherbicide to control Phalaris minor and Beta vulgaris weeds beside its effect on Pisum sativum growth as well as yield traits. Two pot experiments were conducted in the greenhouse of the National Research Centre, Dokki, Giza, Egypt, in the two successive winter seasons of (2016–2017, 2017–2018). Treatments were applied by spraying E. sativa fresh shoot aqueous extract once at 14 days after sowing and twice at 14 and 21 days after sowing at rates of 20, 40, 60, and 80% w/v. E. sativa fresh shoot aqueous extract at 80% achieved the maximum inhibition effect on the growth of both weeds. This in turn was reflected on P. sativum plant and gave the observable highest growth and yield parameters. Chemical analysis of E. sativa shoot powder approved the presence glucosinolates (9.6 μmol/g) and phenolic compounds (46.5 mg/g) which may be responsible for the allelopathic effect. Spraying of aqueous fresh shoot extract of E. sativa at 80% (w/v) can be applied as natural selective bioherbicide in controlling the two annual grassy and broad-leaved weeds associated with P. sativum plants.

Tài liệu tham khảo

Ahmed SA, El-Rokiek KG, El-Masry RR, Messiha NK (2014) The efficiency of Allelochemicals in the seed powder of Eruca sativa in controlling weeds in Pisum sativum. Middle East J Agric Res 3(4):757–762 Al-qasomi S, Al-sohaibani M, Al-Howriny T, Al-Yahya M, Rafatullah S (2009) Rocket (Eruca sativa): a salad herb with potential gastric anti-ulcer activity. World J Gastroenterol 15(6):1958–1965. https://doi.org/10.3748/wjg.15.1958 Bakht T, Khan IA, Khan MI, Khan I, Khattak AM (2009) Weed control in pea (Pisum sativum L.) through mulching. Pak J Weed Sci Res 15(1):83–89 Bell L, Wagstaff C (2014) Glucosinolates, Myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). J Agric Food Chem 60(2):4481–4492 https://pubs.acs.org/doi/abs/10.1021/jf501096x Bennett RN, Carvalho R, Mellon FA, Eagles J, Rosa EAS (2007) Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxistenuifolia L. (wild rocket) from diverse geographical locations. J Agric Food Chem 55:67–74 https://pubs.acs.org/doi/abs/10.1021/jf061997d Bennett RN, Mellon FA, Botting NP, Eagles J, Rosa EAS, Williamson G (2002) Identification of the major glucosinolate (4-mercaptobutylglucosinolate) in leaves of Eruca sativa L. Phytochem 61:25–30. https://doi.org/10.1016/S0031-9422(02)00203-0 Bennett RN, Rosa EAS, Mellon FA, Kroon PA (2006) Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxiserucoides (wall rocket), Diplotaxistenuifolia (wild rocket) and Bunias orientalis (Turkish rocket). J Agric Food Chem 54:4005–4015. https://doi.org/10.1021/jf052756t Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochem 67:1053–1067. https://doi.org/10.1016/j.phytochem.2006.02.024 Bonnessen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120–6130 Cerdeira AL, Cantrell CL, Dayan FE, Byrd JD, Duke SO (2012) Tabanone, a new phytotoxic constituent of cogongrass (Imperatacylindrica). Weed Sci 60:212–218. https://doi.org/10.1614/WS-D-11-00160.1 Cheng F, Cheng Z (2016) Corrigendum: research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 7(1697):1–16. https://doi.org/10.3389/fpls.2016.01697 Dadkhah A (2012) Phytotoxic effect of aqueous extract of eucalyptus sunflower and sugerbeet on seed germination, growth and photosynthesis of Amaranthus retrofelexus. Allelopath J 29(2):287–296 Daxenbichler ME, Spencer GF, Carlson DG, Rose GB, Brinker AM, Powell RG (1991) Glucosinolate composition of seeds from 297 species of wild plants. Phytochem 30:2623–2638. https://doi.org/10.1016/0031-9422(91)85112-D Duncan DB (1955) Multiple range and multiple F. tests. Bimetrics 11:1–42 Ebrahimi F, Hosseini NM, Hosseini MB (2011) Effects of herbal extracts on red root pigweed ( Amaranthus retroflexus) and lambs quarters (Chenopodium album) weeds in pinto 143 bean (Phaseolus vulgaris). Iran J Field Crop Sci 42:757–766 El-Dabaa MAT, Ahmed SA, Messiha NK, El-Masry RR (2019) The allelopathic efficiency of Eruca sativa seed powder in controlling Orobanche crenata infected Vicia faba cultivars. Bull Natl Res Cent 43(37):1–8. https://doi.org/10.1186/s42269-019-0079-9 El-Masry RR, Messiha NK, El-Rokiek KG, Ahmed SA, Mohamed SA (2015) The allelopathic effect of Eruca sativa Mill. Seed powder on growth and yield of Phaseolus vulgaris and associated weeds. Curr Sci Int 4(4):485–490 El-Rokiek KG, Saad El-Din SA (2017) Allelopathic activity of Eucalyptus globulus leaf water extract on Pisum sativum growth, yield and associated weeds. Middle East J Appl Sci 7(4):907–913 El-Rokiek KG, Saad El-Din SA, El-Wakeel MA, Dawood MG, El-Awadi M (2018) Allelopathic effect of the two medicinal plants Plectranthus amboinicus (Lour.) and Ocimum basilicum L. on the growth of Pisum sativum L. and associated weeds. Middle East J Agric Res 7(3):1146–1153 El-Wakeel MA (2015) Effect of allelopathy and autotoxicity of some plants as well as herbicides on wheat and associated weeds PHD. Thesis, Faculty of Science, Benha University, Egypt Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochem 56:5–51. https://doi.org/10.1016/S0031-9422(00)00316-2 Ferreira AG, Áquila MEA (2000) Alellopathy: an emerging topic in ecophysiology. Rev Bras Fisiol Veg 12:175–204 Fuentes E, Castro R, Astudillo L, Carrasco G, Alarcón M, Gutierrez M, Palomo I (2012) Bioassay-guided isolation and HPLC determination of bioactive compound that relate to the anti-platelet activity (adhesion, secretion and aggregation) from Solanum lycopersicum. Evid Based Complement Alternat Med 147031:1–10. https://doi.org/10.1155/2012/147031 Hanafi EM, Hegazy EM, Riad RM, Amer HA (2010) Bio-protective effect of Eruca sativa seed oil against the hazardus effect of aflatoxin B1 in male rabbits. Int J Acad Res 2(2):67–74 Hecht SS (1999) Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen metabolism. J Nutr 129(3):768S–774S. https://doi.org/10.1093/jn/129.3.768S Hegab MM, Khodary SEA, Hammouda O, Gharieb HR (2008) Autotoxicity of chard and its alllopathic potentiality on germination and some metabolic activities associated with growth of weed seedling. Afr J Biotechnol 7:884–892 Jabran K, Mahajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65. https://doi.org/10.1016/j.cropro.2015.03.004 Khan TD, Elzaawely AA, Chung IM, Ahn JK, Tawata S, Xuan TD (2007) Role of allelochemical for weed management in rice. Allelopath J 19:85–96 Lamy E, Shoder J, Paulus S, Brenk P, Stahi T, Sandermann VM (2008) Antigeno- toxic proprieties of Eruca sativa (Rocket plant), erocin and erysolin in human hepatoma (HePG2) cells towards benzo(a) pyrene and their mode of action. Food Chem Toxicol 46(7):2415–24210. https://doi.org/10.1016/j.fct.2008.03.022 Martinez-Ballesta M, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14(6):11607–11625. https://doi.org/10.3390/ijms140611607 Martinez-Sanchez A, Gil-Izquierdo A, Gil MI, Ferreres F (2008) A comparative study of flavonoid compounds, vitamin C and antioxidant properties of baby leaf Brassicaceae species. J Agric Food Chem 56:2330–2340. https://doi.org/10.1021/jf072975+ Messiha NK, Ahmed SA, El-Rokiek KG, Dawood MG, El-Masry RR (2013) The physiological influence of allelochemicals in two Brassicaceae plant seeds on the growth and propagative capacity of Cyperusrotundus and Zea mays L. World Appl Sci J 26(9):1142–1149. https://doi.org/10.5829/idosi.wasj.2013.26.09.13548 Nasirullah, Krishnamurthy MN (1996) Amethod for estimating glucosinolates in mustard/rapeseeds and cake. J Food Sci Technol 33(6):498–450 Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43. https://doi.org/10.1017/S0021859605005708 Ori R, Bernardi R, Gueyrard D, Rollin P, Palmieri S (1999) Formation of glucoraphanin by chemoselective oxidation of natural glucoerucin: a chemoenzymatic route to sulphoraphane. Bioorg Med Chem Lett 9:1047–1048. https://doi.org/10.1016/S0960-894X(99)00136-5 Pasini F, Verardo V, Cerretani L, Caboni MF, D’Antuono LF (2011) Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. J Sci Food Agric 91:2858–2864. https://doi.org/10.1002/jsfa.4535 Rauchberger Y, Mokady S, Cogan U (1979) The effect of aqueous leaching of glucosinolates on the nutritive quality of rapeseed meal. J Sci Food Agric 30:31–39. https://doi.org/10.1002/jsfa.2740300107 Reigosa MJ, Pedrol N, González L (2006) Allelopathy - a physiological process with ecological implications. Springer, Berlin, p 637 Rice EL (1984) Allelopathy, 2nd edn. Academic press, New Yourk, p 424 Salim HA, Abdalbaki AA, Khalid HA, Eshak HS, Reski B, Alwan WK (2017) Allelopathic effects for three plants extracts on weeds of wheat (Triticum aestivum L.). J Medi Herbs Ethnomedicine 3:31–33. https://doi.org/10.25081/jmhe.2017.v3.3381 Salisbury PA, Potter TD, Gurung AM, Mailer RJ, Williams WM (2018) Potential impact of weedy Brassicaceae species on oil and meal quality of oil seed rape (canola) in Australia. Weed Res 58(3):200–209. https://doi.org/10.1111/wre.12296 Smith TJ (2001) Mechanisms of carcinogenesis inhibition by isothiocyanates. Expert Opin Investig Drugs 10:2167–2174. https://doi.org/10.1517/13543784.10.12.2167 Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Iowa State University press, Ames Snell FD, Snell CT (1953) Colorimetric methods, vol 111. Organic, D. Van Nostrand Company, Inc, Toronto, New York, London, p 66 Villatoro-Pulido M, Font R, Saha S, Obregon-Cano S, Anter J, Munoz-SerranoDe A, Haro-Bailon A, Alonso-Moraga A, Del Rio-Celestino M (2012) In vivo biological activity of rocket extracts (Eruca vesicaria subsp. sativa (Miller) Thell) and sulforaphane. Food Chem Toxicol 50:1384–1392 Vyvyan JR (2002) Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58:1631–1636 Weckerle B, Michel K, Balazs B, Schreier P, Toth G (2001) Quercetin 3,3′,4′-tri-O-be ta-D-glucopyranosides from leaves of Eruca sativa (Mill.). Phytochemistry 57:547–551. https://doi.org/10.1016/S0031-9422(01)00059-0 Wu H, Pratley J, Lemerle D, Haig T (2000) Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual rye grass. Aust J Agric Res 51(2):259–266. https://doi.org/10.1071/AR98183 Xuan TD, Eiji T, Khan TD (2004) Methods to determine allelopathic potential of crop for weed control. Allelopath J 13(2):149–164 Zhang Y (2004) Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutat Res 555:173–190. https://doi.org/10.1016/j.mrfmmm.2004.04.017