Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adewoye S.O. & Lateef A. 2004. Assessment of the microbiological quality of Clarias gariepinus exposed to an industrial effluent in Nigeria. Environmentalist 24: 249–254.
Andrews J.M. 2005. BSAC standardized disc susceptibility testing method (version 4). J. Antimicrob. Chemother. 56: 60–76.
Bhakya S., Muthukrishnan S., Sukumaran M. & Muthukumar M. 2015. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. (in press) http://dx.doi.org.10.1007/s13204-015-0473-z.
Bhat R., Desphande R., Ganachari S.V., Huh D.O. & Venkarataman A. 2011. Photo-irradiated bio-synthesis of silver nano-particles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorg. Chem. Applic. 2011: Article ID: 650979.
Cho K.H., Park J.E., Osaka T. & Park S.G. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51: 956–960.
Chortyk T.O., Severson R.F., Cutler H.C. & Siesson V.A. 1993. Antibiotic activities of sugar esters isolated from selected Nicotiana species. Biosci. Biotechnol. Biochem. 57: 1355–1356.
Devi L.S. & Joshi S.R. 2012. Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of Eastern Himalaya. Mycobiology 40: 27–34.
El-Batal A.I., ElKenawya N.M., Yassin A.S. & Amin M.A. 2015. Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol. Reports 5: 31–39.
El-Shanshoury A.E.R., ElSilk S.E. & Ebeid M.E. 2011. Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus Esh1 and their antimicrobial activities. ISRN Nanotechnology 2011: Article ID: 385480.
Fayaz A.M., Balaji K., Girilal M., Yadav R., Kalaichelvam P.T. & Venketesan R. 2010. Biogenic synthesis of silver nanopar-ticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 6: 103–109.
Goncharova A.V., Karpenyuk T.A., Tsurkan Y.S., Beisembaeva R.U., Kalbaeva A.M., Mukasheva T.D. & Ignatova L.V. 2013. Screening and identification of microorganisms-potential producers of arachidonic acid. Int. J. Biol. Agric. Biosystems Life Sci. Eng. 7: 368–371.
Jayanthi P. & Lalitha P. 2011. Reducing power of the solvent extracts of Eichhornia crassipes (Mart.) Solms. Int. J. Pharm. Pharmaceut. Sci. 3: 126–128.
Kaiser J.P., Zuin S. & Wick P. 2013. Is nanotechnology revolutionizing the paint and lacquer industry? A critical opinion. Sci. Total Environ. 442: 282–289.
Kannan R.R.R., Arumugam R., Ramya D., Manivannan K. & Anantharaman P. 2013. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl. Nanosci. 3: 229–233.
Khaneja R., Perez-Fons L., Fakhry S., Baccigalupi L., Steiger S., To E., Sandmann G., Dong T.C., Ricca E., Fraser P.D. & Cutting S.M. 2010. Carotenoids found in Bacillus. J. Appl. Microbiol. 108: 1889–1902.
Kothari V.V., Kothari R.K., Kothari C.R., Bhatt V.D., Nathani N.M., Koringa P.G., Joshi C.G. & Vyas B.R.M. 2013. Ge-nomic sequence of salt-tolerant Bacillus safensis strain VK, isolated from saline desert area of Gujarat, India. Genome Announc. 2: e00337–14.
Lateef A. 2004. The microbiology of a pharmaceutical effluent and its public health implications. World J. Microbiol. Biotechnol. 20: 167–171.
Lateef A., Adelere I.A. & Gueguim-Kana E.B. 2015a. Bacillus safensis LAU 13: a new source of keratinase and its multifunctional biocatalytic applications. Biotechnol. Biotechnol. Equip. 29: 54–63.
Lateef A., Adelere I.A. & Gueguim-Kana E.B. 2015b. The biology and potential biotechnological applications of Bacillus safensis. Biologia 70: 411–419.
Lateef A., Adelere I.A., Gueguim-Kana E.B., Asafa T.B. & Beukes L.S. 2015c. Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int. Nano Lett. 5: 29–35.
Lateef A., Azeez M.A., Asafa T.B., Yekeen T.A., Akinboro A., Oladipo I.C., Ajetomobi F.E., Gueguim-Kana E.B. & Beukes, L.S. 2015d. Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities. BioNanoSci. (in press) http://dx.doi.org.10.1007/s12668-015-0181-x.
Lateef A., Davies T.E., Adelekan A., Adelere I.A., Adedeji A.A. & Fadahunsi A.H. 2010. Akara Ogbomoso: microbiological examination and identification of hazards and critical control points. Food Sci. Technol. Int. 16: 389–400.
Lateef A. & Ojo M.O. 2015. Public health issues in the processing of cassava (Manihot esculenta) for the production of lafun and the application of hazard analysis control measures. Qual. Assur. Safety Crops Foods (in press) http://dx.doi.org.10.3920/QAS2014.0476.
Lateef A., Ojo S.A., Azeez M.A., Asafa T.B., Yekeen T.A., Ak-inboro A., Oladipo I.C., Gueguim-Kana E.B. & Beukes L.S. 2015e. Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles. Appl. Nanosci. (in press) http://dx.doi.org.10.1007/s13204-015-0492-9.
Lateef A., Oloke J.K. & Gueguim-Kana E.B. 2004. Antimicrobial resistance of bacterial strains isolated from orange juice products. Afr. J. Biotechnol. 3: 334–338.
Lateef A., Oloke J.K. & Gueguim-Kana E.B. 2005. The prevalence of bacterial resistance in clinical, food, water and some environmental samples in Southwest Nigeria. Environ. Monit. Assess. 100: 59–69.
Lateef A., Oloke J.K., Gueguim Kana E.B., Oyeniyi S.O., Oni-fade O.R., Oyeleye A.O., Oladosu O.C. & Oyelami A.O. 2008. Improving the quality of agro-wastes by solid state fermentation: enhanced antioxidant activities and nutritional qualities. World J. Microbiol. Biotechnol. 24: 2369–2374.
Lateef A., Oloke J.K., Gueguim-Kana E.B. & Pacheco E. 2006. The microbiological quality of ice used to cool drinks and foods in Ogbomoso metropolis, Southwest, Nigeria. Internet J. Food Safety 8: 39–43.
Lateef A. & Yekeen T.A. 2006. Microbial attributes of a pharmaceutical effluent and its genotoxicity on Allium cepa. Int. J. Environ. Stud. 63: 534–536.
Lateef A., Yekeen T.A. & Ufuoma P.E. 2007. Bacteriology and genotoxicity of some pharmaceutical wastewaters in Nigeria. Int. J. Environ. Health 1: 551–562.
Mishra A., Kumari M., Pandey S., Chaudhry V., Gupta K.C. & Nautiyal C.S. 2014. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Biore-sour. Technol. 166: 235–242.
Mokhtari M., Deneshpojouh S., Seyedbagheri S., Atashdehghan R., Abdi K., Sarkar S. & Sharverdi R.A. 2009. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumoniae: the effect of visible-light irradiation and the liquid mixing process. Mater. Res. Bull. 44: 1415–1421.
Nazeruddin G.M., Prasad N.R., Prasad S.R., Shaikh Y.I., Waghmare S.R. & Adhyapak P. 2014. Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Ind. Crops Prod. 60: 212–216.
Olajire A.A. & Azeez L. 2011. Total antioxidant activity, phenolic, flavonoid and ascorbic acid contents of Nigerian vegetables. Afr. J. Food Sci. Technol. 2: 022–029.
Oyaizu M. 1986. Studies on products of browning reactions: an-tioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307–315.
Patil C.D., Borase H.P., Patil S.V., Salunkhe R.B. & Salunke B.K. 2012. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes ae-gypti and Anopheles stephensi and non-target fish Poecillia reticulata. Parasitol. Res. 111: 555–562.
Perez C., Paul M. & Bazerque P. 1990. Antibiotic assay by agar well diffusion method. Acta Biol. Med. Exp. 15: 113–115.
Porob S., Nayak S., Fernandes A., Padmanabhan P., Patil B.A., Meena R.M. & Ramaiah N. 2013. PCR screening for the sur-factin (sfp) gene in marine Bacillus strains and its molecular characterization from Bacillus tequilensis NIO11. Turk. J. Biol. 37: 212–221.
Priyadarshini K.A., Murugan K., Panneerselvam C., Ponarulselvam S., Hwang J.S. & Nicoletti M. 2012. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 111: 997–1006.
Priyadarshini S., Gopinath V., Priyadharsshini N.M., Ali D.M. & Velusamy P. 2013. Synthesis of anisotropic silver nanopar-ticles using novel strain, Bacillus flexus and its application. Colloids Surf. B Biointerfaces 102: 232–237.
Raja C.E. & Omine K. 2012. Arsenic, boron and salt resistant Bacillus safensis MS11 isolated from Mongolia desert soil. Afr. J. Biotechnol. 11: 2267–2275.
Rajarathinam M., Dhanpal D., Morukattu G., Joseph S. & Thangavelu K.P. 2014. Imparting potential antimicrobial and antifungal activities to water based interior paint using nanoparticles of silver as an additive - an eco-friendly approach. Adv. Sci. Eng. Med. 6: 676–682.
Raliya R. & Tarafdar J.C. 2014. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int. Nano Lett. 4: 1–10.
Reza K.M., Ashrafalsadat N., Reza R.M., Taher N. & Ali N. 2014. Isolation and molecular identification of extracellular lipase-producing Bacillus species from soil. Annals Biol. Res. 5: 132–139.
Roohi A., Ahmed I., Khalid N., Iqbal M. & Jamil M. 2014. Isolation and phylogenetic identification of halotolerant/halophilic bacteria from the salt mines of Karak, Pakistan. Int. J. Agric. Biol. 16: 564–570.
Roopan S.M., Madhumitha G., Rahuman A.A., Kamaraj C., Bharathi A. & Surendra T.V. 2013. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind. Crops Prod. 43: 631–635.
Salem W.M., Haridy M., Sayed W.F. & Hassan N.H. 2014. Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. Ind. Crops Prod. 62: 228–234.
Samadi N., Golkaran D., Eslamifar A., Jamalifar H., Fazeli M.R. & Mohseni F.A. 2009. Intra/extracellular biosynthesis of silver nanoparticles by an autochtonous strain of Proteus mirabilis isolated from photographic waste. J. Biomed. Nan-otechnol. 5: 247–253.
Satomi M., Myron T., Duc L. & Venkateswaran K. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int. J. Syst. Evol. Microbiol. 56: 1735–1740.
Shameli K., Ahmad M.B., Zargar M., Wan Yunus W.M.Z., Ibrahim N.A., Shabanzadeh P. & Ghaffari-Moghadam M. 2011. Synthesis and characterization of silver/montmoril-lonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int. J. Nanomed. 6: 271–284.
Shankar S., Jaiswal L., Aparna R.S.L. & Prasad R.G.S.V. 2014. Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Lett. 137: 75–78.
Shanmugam C., Sivasubramanian G., Parthasarathi B., Baskaran K., Balachander R. & Parameswaran V.R. 2015. Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: a promenade towards sustain-ability. Appl. Nanosci. (in press) http://dx.doi.org.10.1007/s13204-015-0477-8.
Shanmugam N., Rajkamal P., Cholan S., Kannadasan N., Sathishkumar K., Viruthagiri G. & Sundaramanickam A. 2014. Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl. Nanosci. 4: 881–888.
Singh R.S., Singh R.P. & Yadav M. 2013. Molecular and biochemical characterization of a new endoinulinase producing bacterial strain of Bacillus safensis AS-08. Biologia 68: 1028–2013.
Thirumurugan A., Tomy N.A., Kumar H.P. & Prakash P. 2011. Biological synthesis of silver nanoparticles by Lantana ca-mara leaf extracts. Int. J. Nanomat. Biostruct. 1: 22–24.
Williams B.W., Cuverlier M.E. & Berset C. 1995. Use of free radical method to evaluate antioxidant activity. Food Sci. Technol. LWT 28: 25–30.