Biogenic silver nanoparticles reduce adherence, infection, and proliferation of toxoplasma gondii RH strain in HeLa cells without inflammatory mediators induction

Experimental Parasitology - Tập 211 - Trang 107853 - 2020
Laís Fernanda Machado1, Raquel Arruda Sanfelice1, Larissa Rodrigues Bosqui1, João Paulo Assolini1, Sara Scandorieiro2, Italmar Teodorico Navarro3, Allan Henrique Depieri Cataneo4, Pryscilla Fanini Wowk4, Gerson Nakazato2, Juliano Bordignon4, Wander Rogerio Pavanelli1, Ivete Conchon-Costa1, Idessania Nazareth Costa1
1Departamento de Patologia Experimental – Laboratório de Imunoparasitologia Das Doenças Negligenciadas e Câncer. Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
2Departamento de Microbiologia – Laboratório de Bacteriologia Básica e Aplicada. Universidade Estadual de Londrina, Paraná, Brazil
3Departamento de Medicina Veterinária Preventiva – Laboratório de Zoonoses e Saúde Pública. Universidade Estadual de Londrina, PR, Brazil
4Laboratório de Virologia Molecular. Instituto Carlos Chagas, ICC/ Fiocruz, Curitiba, Paraná, Brazil

Tài liệu tham khảo

Adair, 2010, Nanoparticulate alternatives for drug delivery, ACS nan, 4, 4967, 10.1021/nn102324e Adeyemi, 2015, Evaluation of metal nanoparticles for drug delivery systems, J. Biomed Res., 29, 145, 10.7555/JBR.28.20130096 Adeyemi, 2017, Inorganic nanoparticles kill Toxoplasma gondii via changes in redox status and mitochondrial membrane potential, Int. J. Nanomed., 12, 1647, 10.2147/IJN.S122178 Adeyemi, 2018, Metal nanoparticles restrict the growth of protozoan parasites, Artificial cells, nanomedicine, and biotechnology, 14, 1 Alday, 2017, Genetic evidence for cytochrome b qi site inhibition by 4 (1H)-quinolone-3-diarylethers and antimycin in Toxoplasma gondii, Antimicrob. Agents Chemother., 61, 10.1128/AAC.01866-16 Allahverdiyev, 2011, Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light, Int. J. Nanomed., 6, 2705, 10.2147/IJN.S23883 Andrew, 1995, Nitric oxide regulates IL-8 expression in melanoma cells at the transcriptional level, Biochem. Biophys. Res. Commun., 214, 949, 10.1006/bbrc.1995.2378 Asharani, 2008, Toxicity of silver nanoparticles in zebrafish models, Nanotechnology, 19, 255102, 10.1088/0957-4484/19/25/255102 Assolini, 2017, Nanomedicine advances in toxoplasmosis: diagnostic, treatment, and vaccine applications, Parasitol. Res., 116, 1603, 10.1007/s00436-017-5458-2 Atilla, 2015, Severe toxoplasmic hepatitis in an immunocompetent patient, Jpn. Infect. Dis., 68, 407, 10.7883/yoken.JJID.2014.422 Barbosa, 2012, Enrofloxacin is able to control Toxoplasma gondii infection in both in vitro and in vivo experimental models, Vet. Parasitol., 187, 44, 10.1016/j.vetpar.2011.12.039 Bhardwaj, 2012, Nanobiosciences: a contemporary approach in antiparasitic drugs, Mol. Cell. Pharmacol., 4, 97 Busch, 2011, Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties, J. Nano Res., 13, 293, 10.1007/s11051-010-0030-3 Butcher, 2001, Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor NF-κB, J. Immunol., 167, 2193, 10.4049/jimmunol.167.4.2193 Butkus, 2004, Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection, Appl. Environ. Microbiol., 70, 2848, 10.1128/AEM.70.5.2848-2853.2004 Castanheira, 2015, Insights into anti-parasitism induced by a C-type lectin from Bothrops pauloensis venom on Toxoplasma gondii, Int. J. Biol. Macromol., 74, 568, 10.1016/j.ijbiomac.2014.11.035 David, 2014, Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract, Colloids Surf. B Biointerfaces, 122, 767, 10.1016/j.colsurfb.2014.08.018 Durán, 2016, Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity, Nanomed. Nanotechnol. Biol. Med., 12, 789, 10.1016/j.nano.2015.11.016 Durán, 2005, Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains, J. Nanobiotechnol., 3, 8, 10.1186/1477-3155-3-8 Fanti, 2018, Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro, Acta Trop., 178, 46, 10.1016/j.actatropica.2017.10.027 Foldbjerg, 2011, Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549, Arch. Toxicol., 85, 743, 10.1007/s00204-010-0545-5 Gaafar, 2014, Chitosan and silver nanoparticles: promising anti-Toxoplasma agents, Exp. Parasitol., 143, 30, 10.1016/j.exppara.2014.05.005 Hussain, 2005, In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicol. Vitro, 19, 975, 10.1016/j.tiv.2005.06.034 Isaac-Márquez, 2018, Decanethiol functionalized silver nanoparticles are new powerful leishmanicidals in vitro, World J. Microbiol. Biotechnol., 34, 38, 10.1007/s11274-018-2420-0 Jia, 2010, Characterization of a leucine aminopeptidase from Toxoplasma gondii, Mol. Biochem. Parasitol., 170, 1, 10.1016/j.molbiopara.2009.11.005 Jones, 1971, George Otto Gey (1899–1970): the HeLa cell and a reappraisal of its origin, Ob/Gyn., 38, 945 Khalil, 2013, Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats, Colloids Surf. B Biointerfaces, 101, 353, 10.1016/j.colsurfb.2012.06.024 Khanna, 2015, Nanotoxicity: an interplay of oxidative stress, inflammation and cell death, Nanomaterials, 5, 1163, 10.3390/nano5031163 Kim, 2001, Nuclear factor-kappa B plays a major role in the regulation of chemokine expression of HeLa cells in response to Toxoplasma gondii infection, Parasitol. Res., 87, 758, 10.1007/s004360100447 Kim, 2012, Size dependent cellular toxicity of silver nanoparticles, J. Biomed. Mater. Res., 100, 1033, 10.1002/jbm.a.34053 Krueger, 2014, Drinking water source and human Toxoplasma gondii infection in the United States: a cross-sectional analysis of NHANES data, BMC Publ. Health, 14, 711, 10.1186/1471-2458-14-711 Lodge, 2006, Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane, Cell Microbiol., 8, 1922, 10.1111/j.1462-5822.2006.00758.x Lu, 2010, Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes, Chem. Phys. Lett., 487, 92, 10.1016/j.cplett.2010.01.027 Lucey, 2009, Henrietta Lacks, HeLa cells, and cell culture contamination, Arch. Pathol. Lab Med., 133, 1463, 10.5858/133.9.1463 Manke, 2013, Mechanisms of nanoparticle-induced oxidative stress and toxicity, BioMed Res. Int., 2013, 1, 10.1155/2013/942916 Matsui, 2006, Leucine aminopeptidases: diversity in structure and function, JBC, 12, 1535 Melo, 2011, Toxoplasma gondii effectors are master regulators of the inflammatory response, Trends Parasitol., 27, 487, 10.1016/j.pt.2011.08.001 Misawa, 2011, Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations, Nanomedicine: NBM (NMR Biomed.), 7, 604, 10.1016/j.nano.2011.01.014 Mnkandhla, 2018, In vivo; in vitro interaction of silver nanoparticles with leucine aminopeptidase from human and Plasmodium falciparum, J. Nanosci. Nanotechnol., 18, 865, 10.1166/jnn.2018.13966 Montazeri, 2017, A systematic review of in vitro and in vivo activities of anti-Toxoplasma drugs and compounds (2006–2016), Front. Microbiol., 8, 25, 10.3389/fmicb.2017.00025 Mosmann, 1983, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65, 55, 10.1016/0022-1759(83)90303-4 Oberdörster, 2005, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect., 113, 823, 10.1289/ehp.7339 Park, 2018, Inactivation of influenza A virus via exposure to silver nanoparticle-decorated silica hybrid composites, Environ. Sci. Pollut. Res., 25, 27021, 10.1007/s11356-018-2620-z Petersen, 2007, Toxoplasmosis, formerly.Semin. Neonatol., 12, 214 Picoli, 2016, Silver nanoparticles/silver chloride (Ag/AgCl) synthesized from Fusarium oxysporum acting against Klebsiella pneumouniae carbapenemase (KPC) and extended spectrum beta-lactamase (ESBL), Front. Nanosci. Nanotech., 2, 107, 10.15761/FNN.1000117 Pourali, 2016, Biological production of silver nanoparticles by soil isolated bacteria and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat, J. Trace Elem. Med. Biol., 34, 22, 10.1016/j.jtemb.2015.11.004 Rahul, 2015, In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles, Parasitol. Int., 64, 353, 10.1016/j.parint.2015.05.004 Riehemann, 2009, Nanomedicine: challenge and perspectives, Angew. Chem. Int. Ed., 48, 872, 10.1002/anie.200802585 Robert-Gangneux, 2012, Epidemiology of and diagnostic strategies for toxoplasmosis, Clin. Microbiol. Ver., 25, 264, 10.1128/CMR.05013-11 Sanfelice, 2017, Activity of rosuvastatin in tachyzoites of Toxoplasma gondii (RH strain) in HeLa cells, Exp. Parasitol., 181, 75, 10.1016/j.exppara.2017.07.009 Sanguiñedo, 2018, Extracellular biosynthesis of silver nanoparticles using fungi and their antibacterial activity, Nano Biomed. Eng., 10, 165, 10.5101/nbe.v10i2.p165-173 Scandorieiro, 2016, Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains, Front. Microbiol., 7, 760, 10.3389/fmicb.2016.00760 Sepulveda-Arias, 2014, Anti-Toxoplasma activity of natural products: a review, Recent Pat. Anti-Infect., 9, 186, 10.2174/1574891X10666150410120321 Shapira, 2002, Suppression of NF-κB activation by infection with Toxoplasma gondii, J. Infect. Dis., 185, S66, 10.1086/338000 Sharma, 2019, Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus, Appl. Microbiol. Biotechnol., 103, 881, 10.1007/s00253-018-9488-1 Shrivastava, 2007, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, 18, 225103, 10.1088/0957-4484/18/22/225103 Singh, 2010, Cytotoxic and genotoxic assessment of glycolipid-reduced and-capped gold and silver nanoparticles, New J. Chem., 34, 294, 10.1039/B9NJ00277D Stępkowski, 2014, Silver nanoparticles induced changes in the expression of NF-κB related genes are cell type specific and related to the basal activity of NF-κB, Toxicol. Vitro, 28, 473, 10.1016/j.tiv.2014.01.008 Sutterland, 2015, Beyond the association Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta analysis, Acta Psychiatr. Scand., 132, 161, 10.1111/acps.12423 Tomiotto-Pellissier, 2018, Biomed. Pharmacother., 98, 662, 10.1016/j.biopha.2017.12.083 Torres-Sangiao, 2016, Advanced nanobiomaterials: vaccines, diagnosis and treatment of infectious diseases, Molecules, 21, 867, 10.3390/molecules21070867 Villarete, 1995, Nitric oxide regulation of IL-8 expression in human endothelial cells, Biochem. Biophys. Res. Commun., 211, 671, 10.1006/bbrc.1995.1864 Wong, 2009, Further evidence of the anti inflammatory effects of silver nanoparticles, ChemMedChem, 4, 1129, 10.1002/cmdc.200900049 Yah, 2015, Nanoparticles as potential new generation broad spectrum antimicrobial agents, Daru, 23, 43, 10.1186/s40199-015-0125-6 Zhang, 2016, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches, Int. J. Mol. Sci., 17, 1534, 10.3390/ijms17091534 Zheng, 2008, Study on the interaction between silver nanoparticles and nucleic acids in the presence of cetyltrimethylammonium bromide and its analytical application, Talanta, 74, 526, 10.1016/j.talanta.2007.06.014 Zheng, 2015, Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9, Int. J. Parasitol., 45, 141, 10.1016/j.ijpara.2014.09.003