Biogenic selenium nanoparticles with antifungal activity against the wood-rotting fungus Oligoporus pelliculosus
Tài liệu tham khảo
Moreno-Martin, 2017, Determination of size and mass-and number-based concentration of biogenic SeNPs synthesized by lactic acid bacteria by using a multimethod approach, Anal. Chim. Acta, 992, 34, 10.1016/j.aca.2017.09.033
Das, 2020, Antibacterial activity of silver nanoparticles (biosynthesis): a short review on recent advances, Biocatal. Agric. Biotechnol., 27, 10.1016/j.bcab.2020.101593
Sabouri, 2020, Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties, Mater. Technol., 37, 555, 10.1080/10667857.2020.1863573
Ganesh Kumar, 2011, Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata, Colloids Surf. B Biointerfaces, 87, 159, 10.1016/j.colsurfb.2011.05.016
Cremonini, 2016, Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts, Microb. Biotechnol., 9, 758, 10.1111/1751-7915.12374
Devi, 2014, Antibacterial and antifungal activity of silver nanoparticles synthesized using Hypnea muciformis, Biosci., Biotech. Res. Asia, 11, 235, 10.13005/bbra/1260
Sabouri, 2022, Facile green synthesis of Ag-doped ZnO/CaO nanocomposites with Caccinia macranthera seed extract and assessment of their cytotoxicity, antibacterial, and photocatalytic activity, Bioprocess Biosyst. Eng., 45, 1799, 10.1007/s00449-022-02786-w
Bhagavanth Reddy, 2022
Martínez, 2020, Biotransformation of selenium by lactic acid bacteria: formation of seleno-nanoparticles and seleno-amino acids, Front. Bioeng. Biotechnol., 8, 506, 10.3389/fbioe.2020.00506
Wang, 2022, Microbial reduction and resistance to selenium: mechanisms, applications and prospects, J. Hazard. Mater., 421, 10.1016/j.jhazmat.2021.126684
Yasir, 2020, NAD(P)H dependent thioredoxin-disulfide reductase TrxR is essential for tellurite and selenite reduction and resistance in Bacillus sp. Y3, FEMS Microbiol. Ecol., 96, 126, 10.1093/femsec/fiaa126
S. Menon, et al., Chapter 8 - Biomemetic Synthesis of Selenium Nanoparticles and Its Biomedical Applications., In Micro and Nano Technologies, Green Synthesis, Characterization and Applications of Nanoparticles, Ashutosh Kumar Shukla, Siavash Iravani Editors 2019. Elsevier. p. 165–197.
Wang, 2019, The essentialness of glutathione reductase GorA for biosynthesis of Se(0)-nanoparticles and GSH for CdSe quantum dot formation in Pseudomonas stutzeri TS44, J. Hazard. Mater., 366, 301, 10.1016/j.jhazmat.2018.11.092
Piacenza, 2017, Biogenic SeNPs from Bacillus mycoides SelTE01 and Stenotrophomonas maltophilia SelTE02: characterization with reference to their associated organic coating, AIP Conf. Proc., 1873, 10.1063/1.4997134
Wadhwani, 2016, Biogenic selenium nanoparticles: current status and future prospects, Appl. Microbiol. Biotechnol., 100, 2555, 10.1007/s00253-016-7300-7
Amiri, 2021, Green synthesized selenium nanoparticles for ovarian cancer cell apoptosis, Res. Chem. Intermed., 47, 2539, 10.1007/s11164-021-04424-8
Tugarova, 2017, Proteins in microbial synthesis of selenium nanoparticles, Talanta, 174, 539, 10.1016/j.talanta.2017.06.013
Jain, 2015, Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles, Environ. Sci. Technol., 49, 1713, 10.1021/es5043063
Xu, 2018, Proteins enriched in charged amino acids control the formation and stabilization of selenium nanoparticles in Comamonas testosteroni S44, Sci. Rep., 8, 4766, 10.1038/s41598-018-23295-5
Oremland, 2004, Structural and spectral features of selenium nanospheres produced by se-respiring bacteria, Appl. Environ. Microbiol., 70, 52, 10.1128/AEM.70.1.52-60.2004
Adibian, 2022, Green synthesis of selenium nanoparticles using Rosmarinus officinalis and investigated their antimicrobial activity, BioMetals, 35, 147, 10.1007/s10534-021-00356-3
Joshi, 2019, Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules, Biomolecules, 29, 419, 10.3390/biom9090419
Shakibaie, 2015, Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans, Jundishapur J. Microbiol., 8, e26381, 10.5812/jjm.26381
Bafghi, 2021, Evaluation and comparison of the effects of biosynthesized selenium and silver nanoparticles using plant extracts with antifungal drugs on the growth of Aspergillus and Candida species, Rend. Fis. Acc. Lincei, 32, 791, 10.1007/s12210-021-01021-0
L. Collado, et al., Monitoreo del estado de intervención y de la regeneración de Nothofagus pumilio en un plan de manejo forestal en el ecotono estepa-bosque de Tierra del Fuego, Argentina. Bosque 29 (1) (2008) 85–90.
Pastur, 2000, Timber production of Nothofagus pumilio forests by a shelterwood system in Tierra del Fuego (Argentina), For. Ecol. Manag., 134, 1
Rajchenberg, 1996, Los hongos pudridores de Nothofagus pumilio (Lenga): identificación de los cultivos puros, Bosque, 17, 87, 10.4206/bosque.1996.v17n2-09
Fernández, 2007, Cocultivo in vitro de callos de Nothofagus nervosa con el hongo xilófago Postia pelliculosa, Bosque, 28, 65
Kent, 2004, Effects of wood decay by Postia placenta on the lateral capacity of nailed oriented strandboard sheathing and douglas-fir framing members, Wood Fiber. Sci., 36, 560
Skrede, 2019, Wood modification by furfuryl alcohol resulted in a delayed decomposition response in Rhodonia (Postia) placenta, J. Appl. Environ. Microbiol., 85, 1, 10.1128/AEM.00338-19
Marfetán, 2020, Rhizospheric microorganisms as potential biocontrol agents against Phytophthora austrocedri, Eur. J. Plant. Pathol., 158, 721, 10.1007/s10658-020-02113-7
Cruz, 2018, Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa, J. Biomed. Mater. Res. Part A, 106, 1400, 10.1002/jbm.a.36347
Borah, 2021, Selenite bioreduction and biosynthesis of selenium nanoparticles by Bacillus paramycoides SP3 isolated from coal mine overburden leachate, Environ. Pollut., 285, 10.1016/j.envpol.2021.117519
R. Kirupagaran, A. Saritha, and S. Bhuvaneswari, Leucas lavandulifolia Sm. and their application, 2016. [Online]. Available: www.jacsdirectory.com/jnst.
Nancharaiah, 2015, Ecology and biotechnology of selenium-respiring bacteria. Microbiol, Mol. Biol. Rev., 79, 61, 10.1128/MMBR.00037-14
Huber, 2000, Respiration of arsenate and selenate by hyperthermophilic archaea, Syst. Appl. Microbiol., 23, 305, 10.1016/S0723-2020(00)80058-2
Wadgaonkar, 2019, Microbial transformation of Se oxyanions in cultures of Delftia lacustris grown under aerobic conditions, J. Microbiol., 57, 362, 10.1007/s12275-019-8427-x
Bautista-Hernández, 2012, Zinc and lead biosorption by Delftia tsuruhatensis: a bacterial strain resistant to metals isolated from mine tailings, J. Water Resour. Prot., 4, 207, 10.4236/jwarp.2012.44023
Nguyen, 2016, Microbial selenite reduction with organic carbon and electrode as sole electron donor by a bacterium isolated from domestic wastewater, Bioresour. Technol., 212, 182, 10.1016/j.biortech.2016.04.033
Burattini, 2008, A FTIR microspectroscopy study of autolysis in cells of the wine yeast Saccharomyces cerevisiae, Vib. Spectrosc., 47, 139, 10.1016/j.vibspec.2008.04.007
Kora, 2016, Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: an approach for conversion of selenite, J. Environ. Manag., 181, 231, 10.1016/j.jenvman.2016.06.029
Kamnev, 2017, FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles, J. Mol. Struct., 1140, 106, 10.1016/j.molstruc.2016.12.003
Ivanov, 2004, Electrochemical formation of amorphous selenium films doped by lead selenide nanoparticles, Russian J. Electrochem., 40, 1044, 10.1023/B:RUEL.0000046489.81407.ff
Alagesan, 2019, Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities, Bionanoscience, 9, 105, 10.1007/s12668-018-0566-8
Johnson, 1999, Selenium nanoparticles: a small-angle neutron scattering study, J. Phys. Chem. B., 103, 59, 10.1021/jp983229y
Mehta, 2008, Surfactant assisted synthesis and spectroscopic characterization of selenium nanoparticles in ambient conditions, Nanotechnology, 19, 10.1088/0957-4484/19/29/295601
Filipović, 2021, Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure, Front. Bioeng. Biotechnol., 25
Wildermuth, 1977, Hyphal density as a measure of suppression of Gaeumannomyces graminis var. tritici on wheat roots, Soil Biol. Biochem., 9, 203, 10.1016/0038-0717(77)90076-1
Velayati, 2022, Green-based biosynthesis of Se nanorods in chitosan and assessment of their photocatalytic and cytotoxicity effects, Environ. Technol. Innov., 27, 10.1016/j.eti.2022.102610
De Filpo, 2013, Preventing fungal growth in wood by titanium dioxide nanoparticles, Int. Biodeter. Biodegr., 85, 217, 10.1016/j.ibiod.2013.07.007
Ghaderi, 2021, Green synthesis of selenium nanoparticle by Abelmoschus esculentus extract and assessment of its antibacterial activity, Mater. Technol.
Yip, 2014, Investigation of antifungal and antibacterial effects of fabric padded with highly stable selenium nanoparticles, J. Appl. Polym. Sci., 131, 10.1002/app.40728
Vogel, 2018, Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles, J. Hazard. Mater., 344, 749, 10.1016/j.jhazmat.2017.10.034
Ojeda, 2020, Developments in the study and applications of bacterial transformations of selenium species, Crit. Rev. Biotechnol., 40, 1250, 10.1080/07388551.2020.1811199