Biofunctionalization of Glass‐ and Paper‐Based Microfluidic Devices: A Review

Advanced Materials Interfaces - Tập 6 Số 19 - 2019
Amid Shakeri1, Noor Abu Jarad2, Ashlyn Leung2, Leyla Soleymani2, Tohid F. Didar1,2
1Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
2School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON, L8S 4L8, Canada

Tóm tắt

AbstractBiofunctionalization of microchannels is of great concern in the fabrication of microfluidic devices. Different substrates such as glass slides, papers, polymers, and beads require different biofunctionalization approaches granting the utilization of microfluidics in several biomedical applications. Covalent immobilization of biomolecules inside the microchannels is achieved by chemical modification of the surface such as silanization or introducing different coupling agents. Although creating biointerfaces that are covalently bonded to the microchannel surface necessitates multiple steps of surface modification and incubation times, it bestows a robust biointerface capable of withstanding high shear stresses and harsh conditions without dissipating the biofunctionality. Regarding the applications that do not require robustness and long‐term stability, noncovalent attachment of biomolecules such as van der Waals and hydrophobic interactions are adequate to successfully create a functional biointerface. This review summarizes the various biofunctionalization approaches used in the most common microfluidic substrates: glass and paper. In addition, several biofunctionalization examples are proposed and described in detail along with their associated applications.

Từ khóa


Tài liệu tham khảo

10.1016/j.nantod.2009.12.001

10.1039/C5LC00685F

10.3390/mi8060186

10.1007/978-1-60327-106-6_2

10.1038/nrm4041

10.1021/acssynbio.5b00062

10.1039/c2lc40630f

10.1039/c0lc00130a

10.1016/j.biomaterials.2013.04.014

10.1039/C7LC01183K

10.1039/C8LC00259B

10.1080/05704928.2019.1565864

D.Wang P.Mao R.Gomez‐Sjoberg H.‐T.Wang P.Yang US10203307B2 2019.

10.1007/s10544-018-0331-3

10.1021/acssuschemeng.7b04736

10.1016/j.snb.2018.01.144

10.1016/j.bios.2017.07.043

10.1021/acssensors.8b01218

10.1126/sciadv.aav3294

10.1016/j.biomaterials.2018.07.029

10.1161/ATVBAHA.117.309326

10.1016/j.cobme.2017.12.001

10.1016/B978-0-12-813671-3.00007-4

10.1039/C7LC01224A

Ugolini G. S., 2018, Microfluidics in Cell Biology: Part A: Microfluidics for Multicellular Systems, 69, 10.1016/bs.mcb.2018.05.005

10.1038/nm.3545

10.1038/s41419-018-0304-8

10.3390/s151229848

10.1002/adhm.201300099

10.3390/s151229783

10.1038/nbt.2989

10.1016/j.mee.2019.01.004

10.1016/j.mee.2004.12.071

10.1016/j.jiec.2015.11.015

10.1016/j.msec.2003.09.159

10.1016/j.colsurfb.2013.02.005

10.1038/s41598-016-0001-8

10.1128/AEM.72.3.1949-1955.2006

10.1016/j.talanta.2015.09.013

10.1007/s10544-010-9421-6

10.1002/elps.201300106

10.1016/j.apsusc.2009.10.099

10.1088/1758-5090/aa9554

10.1021/jacs.6b12236

10.1016/j.talanta.2015.10.018

10.1016/j.bios.2017.03.005

10.1039/C8LC00286J

10.1021/ac050131o

10.1007/s10544-016-0054-2

10.1016/j.bios.2016.09.033

10.1007/978-90-481-9029-4_17

10.1007/s00216-012-5821-1

10.1021/ac1012893

10.1038/ncomms11535

10.1039/C7RA11714K

10.1002/eej.23190

10.1039/c1sc00146a

10.1021/ac2025877

10.1016/j.biomaterials.2015.07.046

10.1016/j.polymer.2009.09.053

10.1039/B616851P

10.1016/j.biomaterials.2007.05.037

10.1039/B612966H

10.1039/B916199F

10.1039/c0nr00990c

10.1039/C4LC01121J

10.1039/C4LC01208A

10.1016/j.biomaterials.2003.08.021

10.1039/b600765a

10.1039/c1lc20407f

10.1063/1.4991550

10.1039/c2lc40233e

10.1016/j.wear.2005.02.060

10.1109/84.679393

10.1021/la0262506

10.1038/s41598-017-12149-1

10.1021/acsnano.8b03938

10.3390/ma11061003

10.1063/1.3625605

Torres I., 2017, Sensors, 2, 17

10.1016/j.bpc.2017.04.009

10.1002/macp.201600472

10.1021/jp066101m

10.1021/la015628h

10.1021/acssensors.8b01541

10.1016/S0169-4332(01)00399-3

10.1016/j.tsf.2008.07.030

10.1021/ac404106u

10.1002/sca.20097

10.1016/j.susc.2008.01.036

10.1021/la102447y

10.1016/j.jcis.2007.12.041

10.1016/j.progpolymsci.2013.02.003

10.1002/admi.201800617

10.1021/ja00074a004

10.1016/j.progsurf.2009.06.001

10.1016/j.cis.2012.01.003

10.1021/jp981282g

10.1021/la048483y

10.1021/j100082a031

10.1021/la00023a072

10.1016/S0021-9797(03)00552-6

10.1039/C7AN00523G

10.1039/C4AN01768D

10.1016/j.bios.2015.08.050

10.1007/s10544-016-0095-6

10.1016/j.snb.2014.06.023

10.1016/j.bios.2010.06.007

10.1021/ac0483668

10.1002/elps.201500333

10.1039/c2lc21217j

10.3390/diagnostics2030023

Carbodiimide Crosslinker Chemistry https://www.thermofisher.com/ca/en/home/life‐science/protein‐biology/protein‐biology‐learning‐center/protein‐biology‐resource‐library/pierce‐protein‐methods/carbodiimide‐crosslinker‐chemistry.html (accessed: July 2019).

10.1039/C8AN00898A

10.1007/978-1-4939-0329-0_9

10.1016/j.mee.2014.04.013

Ali M. A., 2013, Sci. Rep., 3, 1

10.1146/annurev-med-092112-143017

10.1126/scitranslmed.3006870

10.1063/1.3493643

10.1021/ac100969k

10.1021/la901558n

10.1039/b823436a

10.1039/b708666k

10.1016/S0022-1759(01)00470-7

10.1021/acs.langmuir.6b03931

10.1039/C8AY00778K

10.1016/j.bios.2018.01.025

10.1007/s11696-017-0357-7

10.1007/s00604-017-2575-7

10.1088/0957-4484/25/9/094006

B.Li D. R.Moore US20130171669A1 2013.

10.1016/j.trac.2009.05.005

10.1039/c3tb20380h

10.1007/978-1-59745-240-3

10.1016/j.colsurfb.2013.05.001

10.1557/mrs.2013.60

10.1063/1.3687398

10.1002/anie.201411508

10.1038/srep30474

10.1007/s00216-018-0879-z

10.1021/acssensors.7b00823

10.3390/s16122086

10.1039/C4AN01147C

10.1021/acsami.5b10027

10.1021/nn300415x

10.1021/la904014z

10.1016/j.aca.2015.02.059

Pelton R., 2008, Biomacromolecules, 935

10.1021/la060961c

10.1016/j.colsurfb.2018.09.067

10.1021/ac300025v

10.1016/j.aca.2017.11.063