Biofilm forming abilities of Salmonellaare correlated with persistence in fish meal- and feed factories

Lene K. Vestby1, Trond Møretrø2, Solveig Langsrud2, Even Heir2, Live L. Nesse1
1National Veterinary Institute, PO Box 750, Sentrum, N-0106, Oslo, Norway
2Nofima mat, Osloveien 1, N-1430, Aas, Norway

Tóm tắt

Abstract Background

Feed contaminated with Salmonella spp. constitutes a risk of Salmonella infections in animals, and subsequently in the consumers of animal products. Salmonella are occasionally isolated from the feed factory environment and some clones of Salmonella persist in the factory environment for several years. One hypothesis is that biofilm formation facilitates persistence by protecting bacteria against environmental stress, e.g. disinfection. The aim of this study was to investigate the biofilm forming potential of Salmonella strains from feed- and fishmeal factories. The study included 111 Salmonella strains isolated from Norwegian feed and fish meal factories in the period 1991–2006 of serovar Agona, serovar Montevideo, serovar Senftenberg and serovar Typhimurium.

Results

Significant differences were found between serovars regarding the abilities to form biofilm on polystyrene (microtiter plate assay) and in the air-liquid interface of nutrient broth (pellicle assay). Strains of serovar Agona and serovar Montevideo were good biofilm producers. In Norwegian factories, clones of these serovars have been observed to persist for several years. Most serovar Senftenberg clones appear to persist for a shorter period, and strains of this serovar were medium biofilm producers in our test systems. Strains of the serovar Typhimurium were relatively poor biofilm producers. Salmonella ser. Typhimurium clones have not been observed to persist even though this serovar is resident in Norwegian wild life. When classifying strains according to persistence or presumed non-persistence, persistent strains produced more biofilm than presumed non-persisting strains.

Conclusion

The results indicate a correlation between persistence and biofilm formation which suggests that biofilm forming ability may be an important factor for persistence of Salmonella in the factory environment.

Từ khóa


Tài liệu tham khảo

Anon: Scientific Opinion of the Panel on Biological Hazards on a request from the Health and Consumer Protection, Directory General, European Commission on Microbiological Risk Assessment in feedingstuffs for foodproducing animals. EFSA J. 2008, 720: 1-84.

Davies RH, Wray C: Distribution of Salmonella contamination in ten animal feedmills. Vet Microbiol. 1997, 57: 159-169. 10.1016/S0378-1135(97)00114-4.

Lunestad BT, Nesse L, Lassen J, Svihus B, Nesbakken T, Fossum K, et al: Salmonella in fish feed; occurrence and implications for fish and human health in Norway. Aquaculture. 2007, 265: 1-8. 10.1016/j.aquaculture.2007.02.011.

Shirota K, Katoh H, Murase T, Ito T, Otsuki K: Monitoring of layer feed and eggs for Salmonella in eastern Japan between 1993 and 1998. J Food Prot. 2001, 64: 734-737.

Veldman A, Vahl HA, Borggreve GJ, Fuller DC: A survey of the incidence of Salmonella species and Enterobacteriaceae in poultry feeds and feed components. Vet Rec. 1995, 136: 169-172.

Crump JA, Griffin PM, Angulo FJ: Bacterial contamination of animal feed and its relationship to human foodborne illness. Clin Infect Dis. 2002, 35: 859-865. 10.1086/342885.

Nesse LL, Nordby K, Heir E, Bergsjoe B, Vardund T, Nygaard H, et al: Molecular analyses of Salmonella enterica isolates from fish feed factories and fish feed ingredients. Appl Environ Microbiol. 2003, 69: 1075-1081. 10.1128/AEM.69.2.1075-1081.2003.

Møretrø T, Midtgaard ES, Nesse LL, Langsrud S: Susceptibility of Salmonella isolated from fish feed factories to disinfectants and air-drying at surfaces. Vet Microbiol. 2003, 94: 207-217. 10.1016/S0378-1135(03)00105-6.

Ronner AB, Wong ACL: Biofilm development and sanitizer inactivation of Listeria monocytogenes and Salmonella Typhimurium on stainless-steel and Buna-N Rubber. J Food Prot. 1993, 56: 750-758.

Møretrø T, Langsrud S: Listeria monocytogenes : biofilm formation and persistence in food-processing environments. Biofilms. 2004, 1: 107-121. 10.1017/S1479050504001322.

Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappinscott HM: Microbial biofilms. Annu Rev Microbiol. 1995, 49: 711-745. 10.1146/annurev.mi.49.100195.003431.

Matthysse AG, Holmes KV, Gurlitz RH: Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol. 1981, 145: 583-595.

Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U: The multicellular morphotypes of Salmonella Typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol. 2001, 39: 1452-1463. 10.1046/j.1365-2958.2001.02337.x.

Møretrø T, Vestby LK, Nesse LL, Hannevik S, Kotlarz K, Langsrud S: Evaluation of efficiency of disinfectants against Salmonella from the feed industry. J Appl Microbiol. 2009, 106: 1005-1012. 10.1111/j.1365-2672.2008.04067.x.

Scher K, Romling U, Yaron S: Effect of heat, acidification, and chlorination on Salmonella enterica serovar Typhimurium cells in a biofilm formed at the air-liquid interface. Appl Environ Microbiol. 2005, 71: 1163-1168. 10.1128/AEM.71.3.1163-1168.2005.

White AP, Gibson DL, Kim W, Kay WW, Surette MG: Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella. J Bacteriol. 2006, 188: 3219-3227. 10.1128/JB.188.9.3219-3227.2006.

Hood SK, Zottola EA: Adherence to stainless steel by foodborne microorganisms during growth in model food systems. Int J Food Microbiol. 1997, 37: 145-153. 10.1016/S0168-1605(97)00071-8.

Joseph B, Otta SK, Karunasagar I, Karunasagar I: Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int J Food Microbiol. 2001, 64: 367-372. 10.1016/S0168-1605(00)00466-9.

Solano C, Sesma B, Alvarez M, Humphrey TJ, Thorns CJ, Gamazo C: Discrimination of strains of Salmonella Enteritidis with differing levels of virulence by an in vitro glass adherence test. J Clin Microbiol. 1998, 36: 674-678.

Woodward MJ, Sojka M, Sprigings KA, Humphrey TJ: The role of sef 14 and sef17 fimbriae in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces. J Med Microbiol. 2000, 49: 481-487.

Lapidot A, Romling U, Yaron S: Biofilm formation and the survival of Salmonella Typhimurium on parsley. Int J Food Microbiol. 2006, 109: 229-233. 10.1016/j.ijfoodmicro.2006.01.012.

Romling U, Rohde M: Flagella modulate the multicellular behavior of Salmonella Typhimurium on the community level. FEMS Microbiol Lett. 1999, 180: 91-102.

Nesse LL, Refsum T, Heir E, Nordby K, Vardund T, Holstad G: Molecular epidemiology of Salmonella spp. isolates from gulls, fish-meal factories, feed factories, animals and humans in Norway based on pulsed-field gel electrophoresis. Epidemiol Infect. 2005, 133: 53-58. 10.1017/S0950268804003279.

Refsum T, Handeland K, Baggesen DL, Holstad G, Kapperud G: Salmonellae in avian wildlife in Norway from 1969 to 2000. Appl Environ Microbiol. 2002, 68: 5595-5599. 10.1128/AEM.68.11.5595-5599.2002.

Romling U, Sierralta WD, Eriksson K, Normark S: Multicellular and aggregative behaviour of Salmonella Typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol. 1998, 28: 249-264. 10.1046/j.1365-2958.1998.00791.x.

Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, et al: Genetic analysis of Salmonella Enteritidis biofilm formation: critical role of cellulose. Mol Microbiol. 2002, 43: 793-808. 10.1046/j.1365-2958.2002.02802.x.

Borucki MK, Peppin JD, White D, Loge F, Call DR: Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol. 2003, 69: 7336-7342. 10.1128/AEM.69.12.7336-7342.2003.

Lunden JM, Miettinen MK, Autio TJ, Korkeala HJ: Persistent Listeria monocytogenes strains show enhanced adherence to food contact surface after short contact times. J Food Prot. 2000, 63: 1204-1207.