Biofeedback như một công cụ quản lý stress: một bài tổng hợp hệ thống

Lauren Kennedy1,2, Sarah Henrickson Parker3,4,2
1Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, USA
2Virginia Tech Carilion Research Institute, Roanoke, USA
3Carilion Clinic, Roanoke, USA
4Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, USA

Tóm tắt

Quản lý không thích hợp căng thẳng cấp tính có thể ảnh hưởng tiêu cực đến nhận thức và hiệu suất công việc. Những cuộc gặp gỡ căng thẳng cấp tính thường xuyên có thể dẫn đến suy giảm chức năng tim mạch và miễn dịch, cũng như các rối loạn tâm lý như trầm cảm, mệt mỏi và kiệt sức. Biofeedback có thể được sử dụng như một phương pháp quản lý stress không xâm lấn, thụ động và liên tục theo thời gian thực. Một bài tổng hợp hệ thống về biofeedback như một can thiệp quản lý stress theo thời gian thực cho những người không phải bệnh nhân đã được thực hiện để xác định tài liệu từ năm 2000 đến 2017, với 17 nghiên cứu đánh giá các chỉ số sinh lý, tâm lý và/hoặc hiệu suất. Các đối tượng tham gia đại diện cho các mẫu thuận tiện (N = 9 nghiên cứu) và các mẫu được chọn có chủ đích, mà hiệu suất tối ưu của họ dưới stress là rất quan trọng cho thành công nghề nghiệp (N = 8 nghiên cứu). Nhiều phương pháp để thu thập dữ liệu, hiển thị biofeedback, kích thích stress và đo lường hiệu suất đã được báo cáo. Tổng thể, biofeedback là một can thiệp hiệu quả có thể được sử dụng để giảm stress sinh lý và chủ quan, và nâng cao hiệu suất. Điều này đặc biệt đúng với các chuyên gia, những người có hiệu suất công việc cần quản lý stress một cách thích hợp.

Từ khóa

#biofeedback #quản lý stress #căng thẳng cấp tính #hiệu suất công việc #rối loạn tâm lý

Tài liệu tham khảo

Allen RJ (1983) Human stress: its nature and control. Burgess, Minneapolis

Alvarez GA (2011) Representing multiple objects as an ensemble enhances visual cognition. Trends in Cogn Sci 15(3):122–131. https://doi.org/10.1016/j.tics.2011.01.003

Andersen JP, Gustafsberg H (2016) A training method to improve police use of force decision making: a randomized controlled trial. SAGE Open 6(2):1–13. https://doi.org/10.1177/2158244016638708

Arora S, Sevdalis N, Aggarwal R, Sirimanna P, Darzi A, Kneebone R (2010a) Stress impairs psychomotor performance in novice laparoscopic surgeons. Surg Endosc Other Interv Tech 24(10):2588–2593. https://doi.org/10.1007/s00464-010-1013-2

Arora S, Sevdalis N, Nestel D, Woloshynowych M, Darzi A, Kneebone R (2010b) The impact of stress on surgical performance: a systematic review of the literature. Surgery 147(3):318–330.e6. https://doi.org/10.1016/j.surg.2009.10.007

Astor PJ, Adam MTP, Jerčić P, Schaaff K, Weinhardt C (2013) Integrating biosignals into information systems: A NeuroIS tool for improving emotion regulation. J Manag Inf Syst 30(3):247–278. https://doi.org/10.2753/MIS0742-1222300309

Atkins PW, Wood RE, Rutgers PJ (2002) The effects of feedback format on dynamic decision making. Organ Behav Hum Decis Process 88(2):587–604. https://doi.org/10.1016/S0749-5978(02)00002-X

Balch CM, Freischlag JA, Shanafelt TD (2009) Stress and burnout among surgeons. Arch Surg 144(4):371–376. https://doi.org/10.1001/archsurg.2008.575

Bormann JE, Becker S, Gershwin M, Kelly A, Pada L, Smith TL, Gifford AL (2006) Relationship of frequent mantram repetition to emotional and spiritual well-being in healthcare workers. J Contin Educ Nurs 37(5):218–224. https://doi.org/10.3928/00220124-20060901-02

Bouchard S, Bernier F, Boivin É, Morin B, Robillard G (2012) Using biofeedback while immersed in a stressful videogame increases the effectiveness of stress management skills in soldiers. PLoS One 7(4):1–11. https://doi.org/10.1371/journal.pone.0036169

Bradley RT, McCraty R, Atkinson M, Tomasino D, Daugherty A, Arguelles L (2010) Emotion self-regulation, psychophysiological coherence, and test anxiety: Results from an experiment using electrophysiological measures. Appl Psychophysiol Biofeedback 35(4):261–283. https://doi.org/10.1007/s10484-010-9134-x

Childre D, McCraty R (2010) Coherence: bridging personal, social, and global health. Altern Ther Health Med 16(4):10–24

Cohen I, Brinkman W-P, Neerincx MA (2015) Modelling environmental and cognitive factors to predict performance in a stressful training scenario on a naval ship simulator. Cogn Technol Work 17(4):503–519. https://doi.org/10.1007/s10111-015-0325-3

Cohen I, Brinkman W-P, Neerincx MA (2016) Effects of different real-time feedback types on human performance in high-demanding work conditions. Int J Hum Comput Stud 91:1–12. https://doi.org/10.1016/j.ijhcs.2016.03.007

Dadashi N, Golightly D, Sharples S (2017) Seeing the woods for the trees: the problem of information inefficiency and information overload on operator performance. Cogn Technol Work 19(4):561–570. https://doi.org/10.1007/s10111-017-0451-1

Delahaij R, Van Dam K (2017) Coping with acute stress in the military: The influence of coping style, coping self-efficacy and appraisal emotions. Personal Individ Differ 119:13–18. https://doi.org/10.1016/j.paid.2017.06.021

Delahaij R, van Dam K, Gaillard AWK, Soeters J (2011) Predicting performance under acute stress: The role of individual characteristics. Int J Stress Manag 18(1):49–66. https://doi.org/10.1037/a0020891

Derogatis LR, Melisaratos N (2012). The brief symptom inventory: an introductory report the brief symptom inventory: an introductory report. Psychol Med (July 2009), 595–605. https://doi.org/10.1017/S0033291700048017

Dziembowska I, Izdebski P, Rasmus A, Brudny J, Grzelczak M, Cysewski P (2016) Effects of heart rate variability biofeedback on EEG alpha asymmetry and anxiety symptoms in male athletes: a pilot study. Appl Psychophysiol Biofeedback 41(2):141–150. https://doi.org/10.1007/s10484-015-9319-4

Eddie D, Vaschillo E, Vaschillo B, Lehrer P (2015) Heart rate variability biofeedback: theoretical basis, delivery, and its potential for the treatment of substance use disorders. Addict Res Theory 23(4):266–272. https://doi.org/10.3109/16066359.2015.1011625

Escolano C, Navarro-Gil M, Garcia-Campayo J, Minguez J (2014) The effects of a single session of upper alpha neurofeedback for cognitive enhancement: a sham-controlled study. Appl Psychophysiol Biofeedback 39(3–4):227–236. https://doi.org/10.1007/s10484-014-9262-9

Evetovich TK, Conley DS, Todd JB, Rogers DC, Stone TL (2007) Effect of mechanomyography as a biofeedback method to enhance muscle relaxation and performance. J Strength Cond Res 21(1):96–99. https://doi.org/10.1519/R-19295.1

Frazier SE, Parker SH (2018) Measurement of physiological responses to acute stress in multiple occupations: a systematic review and implications for front line healthcare providers. Transl Behav Med. https://doi.org/10.1093/tbm/iby019

Gevirtz R (2013) The promise of heart rate variability biofeedback: evidence based applications. Biofeedback 41(3):110–120. https://doi.org/10.5298/1081-5937-41.3.01

Greenberg SF, Valletutti PJ (1980) Stress and the helping professions. P.H. Brookes, Baltimore

Henriques G, Keffer S, Abrahamson C, Horst SJ (2011) Exploring the effectiveness of a computer-based heart rate variability biofeedback program in reducing anxiety in college students. Appl Psychophysiol Biofeedback 36(2):101–112. https://doi.org/10.1007/s10484-011-9151-4

Hupbach A, Fieman R (2012) Moderate stress enhances immediate and delayed retrieval of educationally relevant material in healthy young men. Behav Neurosci 126(6):819–825. https://doi.org/10.1037/a0030489

Joseph B, Parvaneh S, Swartz T, Haider A, Hassan A, Kulavatunyou N, Rhee P (2016) Stress among surgical attendings and trainees: a quantitative assessment during trauma activation and emergency surgeries. J Trauma Acute Care Surg 81(4):1. https://doi.org/10.1097/TA.0000000000001162

Khazan IZ (2013) The clinical handbook of biofeedback, 1st edn. Wiley, New York. https://doi.org/10.1002/9781118485309

Kim PW, Kim SA, Jung KH (2012) Electrocardiographic anxiety profiles improve speech anxiety. Appl Psychophysiol Biofeedback 37(4):261–267. https://doi.org/10.1007/s10484-012-9199-9

Klampfer B, Flin R, Helmreich R, Häusler R, Sexton B, Fletcher G, Amacher A (2001) Enhancing performance in high risk environments: recommendations for the use of behavioural markers. In: Group interaction in high risk environments, pp 6–33. Retrieved from http://books.google.com/books?hl=en&lr=&id=oYKwZ2nkO84C&oi=fnd&pg=PR7&dq=group+interaction+in+high+risk+environments&ots=Y2OWRiI33Y&sig=oTKcYi95BLFHQKOAS5wwz2RcWks

Kontogiannis T, Kossiavelou Z (1999) Stress and team performance: Principles and challenges for intelligent decision aids. Saf Sci 33(3):103–128. https://doi.org/10.1016/S0925-7535(99)00027-2

Kudo N, Shinohara H, Kodama H (2014) Heart rate variability biofeedback intervention for reduction of psychological stress during the early postpartum period. Appl Psychophysiol Biofeedback 39(3–4):203–211. https://doi.org/10.1007/s10484-014-9259-4

Laborde S, Mosley E, Thayer JF (2017) Heart rate variability and cardiac vagal tone in psychophysiological research—recommendations for experiment planning, data analysis, and data reporting. Front Psychol 8:1–18. https://doi.org/10.3389/fpsyg.2017.00213

LeBlanc VR (2009) The effects of acute stress on performance: Implications for health professions education. Acad Med 84(10):S25–S33. https://doi.org/10.1097/ACM.0b013e3181b37b8f

Lehrer P (2007) Principles and practice of stress management: advances in the field. Biofeedback 35(3):82–84

Lehrer P (2013a) History of heart rate variability biofeedback research: a personal and scientific voyage. Biofeedback 41(3):88–97. https://doi.org/10.5298/1081-5937-41.3.03

Lehrer P (2013b) How does heart rate variability biofeedback work? Resonance, the baroreflex, and other mechanisms. Biofeedback 41(1):26–31. https://doi.org/10.5298/1081-5937-41.1.02

Lehrer P, Eddie D (2013) Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions. Appl Psychophysiol Biofeedback 38(2):143–155. https://doi.org/10.1007/s10484-013-9217-6

Lehrer P, Gevirtz R (2014) Heart rate variability biofeedback: How and why does it work? Front Psychol 5:1–9. https://doi.org/10.3389/fpsyg.2014.00756

Lehrer P, Vaschillo E (2008) The future of heart rate variability biofeedback. Biofeedback 36(1):11–14

Lehrer P, Vaschillo E, Vaschillo B (2000) Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Appl Psychophysiol Biofeedback 25(3):177–191. https://doi.org/10.1023/A:1009554825745

Lehrer P, Vaschillo B, Zucker T, Graves J, Katsamanis M, Aviles M, Wamboldt F (2013) Protocol for heart rate variability biofeedback training. Biofeedback 41(3):98–109. https://doi.org/10.5298/1081-5937-41.3.08

Ley R (1999) The modification of breathing behavior: pavlovian and operant control in emotion and cognition. Behav Modif 23(3):441–479

Marteau TM, Bekker H (1992) The development of a six-item short-form of the state scale of the Spielberger State-Trait Anxiety Inventory (STAI). Br J Clin Psychol 31(3):301–306. https://doi.org/10.1111/j.2044-8260.1992.tb00997.x

Mazur LM, Mosaly PR, Hoyle LM, Jones EL, Marks LB (2013) Subjective and objective quantification of physician’s workload and performance during radiation therapy planning tasks. Pract Radiat Oncol 3(4):e171–e177. https://doi.org/10.1016/j.prro.2013.01.001

Mazur LM, Mosaly PR, Hoyle LM, Jones EL, Chera BS, Marks LB (2014) Relating physician’s workload with errors during radiation therapy planning. Pract Radiat Oncol 4(2):71–75. https://doi.org/10.1016/j.prro.2013.05.010

McCraty R, Atkinson M, Tomasino D, Bradley RT (2009a). The coherent heart: heart-brain interactions, psychophysiological coherence, and the emergence of system-wide order. Integral Rev 5(2):10–115. (Publication No. 06–022)

McCraty R, Atkinson M, Lipsenthal L, Arguelles L (2009b) New hope for correctional officers: An innovative program for reducing stress and health risks. Appl Psychophysiol Biofeedback 34(4):251–272. https://doi.org/10.1007/s10484-009-9087-0

McEwen BS (2006) Protective and damaging effects of stress mediators: central role of the brain. Dialogues in Clin Neurosci 8(4):367–381. https://doi.org/10.1056/NEJM199801153380307

Moorthy K, Munz Y, Dosis A, Bann S, Darzi A (2003) The effect of stress-inducing conditions on the performance of a laparoscopic task. Surg Endosc Other Interv Techniques 17(9):1481–1484. https://doi.org/10.1007/s00464-002-9224-9

Nixon J, Charles R (2017) Understanding the human performance envelope using electrophysiological measures from wearable technology. Cogn Technol Work 19(4):655–666. https://doi.org/10.1007/s10111-017-0431-5

Pluyter JR, Buzink SN, Rutkowski AF, Jakimowicz JJ (2010) Do absorption and realistic distraction influence performance of component task surgical procedure? Surg Endosc Other Interv Techniques 24(4):902–907. https://doi.org/10.1007/s00464-009-0689-7

Prinsloo GE, Rauch HG, Lambert M, Muench F, Noakes T, Derman W (2011) The effect of short duration heart rate variability (HRV) biofeedback on cognitive stress. Appl Cogn Psychol 25(5):792–801

Prinsloo GE, Derman WE, Lambert MI, Rauch HGL (2013a) The effect of a single episode of short duration heart rate variability biofeedback on measures of anxiety and relaxation states. Int J Stress Manag 20(4):391–411. https://doi.org/10.1037/a0034777

Prinsloo GE, Rauch HGL, Karpul D, Derman WE (2013b) The effect of a single session of short duration heart rate variability biofeedback on EEG: a pilot study. Appl Psychophysiol Biofeedback 38(1):45–56. https://doi.org/10.1007/s10484-012-9207-0

Raaijmakers SF, Steel FW, de Goede M, van Wouwe NC, van Erp JBF, Brouwer A-M (2013) Heart rate variability and skin conductance biofeedback: a triple-blind randomized controlled study. 2013. In: Humaine Association Conference on Affective Computing and Intelligent Interaction, Sept, 289–293. https://doi.org/10.1109/ACII.2013.54

Rosenstein BAH (2012) Physician stress and burnout: What can we do? Phys Executive J 11/12:22–30

Rusciano A, Corradini G, Stoianov I (2017) Neuroplus biofeedback improves attention, resilience, and injury prevention in elite soccer players. Psychophysiology. https://doi.org/10.1111/psyp.12847

Schoenberg PLA, David AS (2014) Biofeedback for psychiatric disorders: a systematic review. Appl Psychophysiol Biofeedback 39(2):109–135. https://doi.org/10.1007/s10484-014-9246-9

Schwartz MS (2010) A new improved universally accepted official definition of biofeedback: where did it come from? Why? Who did it? Who is it for? What’s next? Biofeedback, 38(3):88–90. https://doi.org/10.5298/1081-5937-38.3.88

Shah P, Carpenter PA (1995) Conceptual limitations in comprehending line graphs. J Exp Psychol 124(1):43–61. https://doi.org/10.1037/0096-3445.124.1.43

Sharma N, Gedeon T (2012) Objective measures, sensors and computational techniques for stress recognition and classification: a survey. Comput Methods Programs Biomed 108(3):1287–1301. https://doi.org/10.1016/j.cmpb.2012.07.003

Sherlin L, Muench F, Wyckoff S (2010) Respiratory sinus arrhythmia feedback in a stressed population exposed to a brief stressor demonstrated by quantitative EEG and sLORETA. Appl Psychophysiol Biofeedback 35:219–228. https://doi.org/10.1007/s10484-010-9132-z

Sherlin LH, Larson NC, Sherlin RM (2013) Developing a performance brain training™ approach for baseball: A process analysis with descriptive data. Appl Psychophysiol Biofeedback 38(1):29–44. https://doi.org/10.1007/s10484-012-9205-2

Sime J-A (2007) Designing emergency response training: seven ways to reduce stress. In: IADIS International Conference on Cognition and Exploratory Learning in Digital Age, pp 41–48

Spielberger CD, Gorsuch RL (1983) State-trait anxiety inventory for adults: manual, instrument, and scoring guide. Mind Garden, Inc, Menlo Park

Summerfield C, Egner T (2009) Expectation (and attention) in visual cognition. Trends Cogn Sci 13(9):403–409. https://doi.org/10.1016/j.tics.2009.06.003

Talcott CP, Bennett KB, Martinez SG, Shattuck LG, Stansifer C (2007) Perception-action icons: an interface design strategy for intermediate domains. Hum Factors 49(1):120–135. https://doi.org/10.1518/001872007779598064

Tanev G, Saadi DB, Hoppe K, Sorensen HBD (2014). Classification of acute stress using linear and non-linear heart rate variability analysis derived from sternal ECG. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), pp 3386–3389. https://doi.org/10.1109/EMBC.2014.6944349

Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH (2009) Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med 37(2):141–153. https://doi.org/10.1007/s12160-009-9101-z

Thayer JF, Åhs F, Fredrikson M, Sollers JJ, Wager TD (2012) A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 36(2):747–756. https://doi.org/10.1016/j.neubiorev.2011.11.009

van Dijk ET, Westerink JHDM., Beute F, IJsselsteijn WA (2015). In sync: The effect of physiology feedback on the match between heart rate and self-reported stress. Biomed Res Int 2015:1–9. https://doi.org/10.1155/2015/134606

Vaschillo EG, Vaschillo B, Lehrer PM (2006) Characteristics of resonance in heart rate variability stimulated by biofeedback. Appl Psychophysiol Biofeedback 31(2):129–142. https://doi.org/10.1007/s10484-006-9009-3

Venables L, Fairclough SH (2004) Establishing the psychophysiological variables that can identify and predict operator subjective state. Proc Hum Factors Ergon Soc Ann Meet 48:90–94. https://doi.org/10.1177/154193120404800120

Vine SJ, Freeman P, Moore LJ, Chandra-Ramanan R, Wilson MR (2013) Evaluating stress as a challenge is associated with superior attentional control and motor skill performance: Testing the predictions of the biopsychosocial model of challenge and threat. J Exp Psychol: Appl 19(3):185–194. https://doi.org/10.1037/a0034106

Weigl M, Stefan P, Abhari K, Wucherer P, Fallavollita P, Lazarovici M, Catchpole K (2016) Intraoperative disruptions, surgeon’s mental workload, and technical performance in a full-scale simulated procedure. Surg Endos Other Interv Tech 30(2):559–566. https://doi.org/10.1007/s00464-015-4239-1

Wetzel CM, Kneebone RL, Woloshynowych M, Nestel D, Moorthy K, Kidd J, Darzi A (2006) The effects of stress on surgical performance. Am J Surg 191(1):5–10. https://doi.org/10.1016/j.amjsurg.2005.08.034

Whited A, Larkin KT, Whited M (2014) Effectiveness of emWave biofeedback in improving heart rate variability reactivity to and recovery from stress. Appl Psychophysiol Biofeedback 39(2):75–88. https://doi.org/10.1007/s10484-014-9243-z

Wickens CD, Andre AD (1990) Proximity compatibility and information display: effects of color, space, and object display on information integration. Hum Fact 32(1):61–77. https://doi.org/10.1177/001872089003200105

Wickens CD, Carswell CM (1995) The proximity compatibility principle: Its psychological foundation and relevance to display design. Hum Fact 37(3):473–494. https://doi.org/10.1518/001872095779049408

Yurko YY, Scerbo MW, Prabhu AS, Acker CE, Stefanidis D (2010) Higher mental workload is associated with poorer laparoscopic performance as measured by the NASA-TLX tool. Simul Healthc 5(5):267–271. https://doi.org/10.1097/SIH.0b013e3181e3f329

Zauszniewski JA, Au T, Musil CM (2013) Heart rate variability biofeedback in grandmothers raising grandchildren: effects on stress, emotions, and cognitions. Biofeedback 41(3):144–149. https://doi.org/10.5298/1081-5937-41.3.06

Zhai J, Barreto A (2006) Stress recognition using non-invasive technology. In: Proceedings of the 19th International Florida Artificial Intelligence Research Society Conference (FLAIRS), pp 395–400. https://doi.org/10.1145/1240866.1241057