Bioengineered and biohybrid bacteria-based systems for drug delivery

Advanced Drug Delivery Reviews - Tập 106 - Trang 27-44 - 2016
Zeinab Hosseinidoust1, Babak Mostaghaci1, Oncay Yasa1, Byung-Wook Park1, Ajay Vikram Singh1, Metin Sitti1
1Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany

Tài liệu tham khảo

Baquero, 2012, The microbiome as a human organ, Clin. Microbiol. Infect., 18, 2, 10.1111/j.1469-0691.2012.03916.x Huttenhower, 2012, Structure, function and diversity of the healthy human microbiome, Nature, 486, 207, 10.1038/nature11234 Wu, 2013, Analysis of the human gut microbiome and association with disease, Clin. Gastroenterol. Hepatol., 11, 774, 10.1016/j.cgh.2013.03.038 Clarke, 2014, Gut microbiota: the neglected endocrine organ, Mol. Endocrinol., 28, 1221, 10.1210/me.2014-1108 Belkaid, 2014, Hand, role of the microbiota in immunity and inflammation, Cell, 157, 121, 10.1016/j.cell.2014.03.011 Metchnikoff, 1908 de Vrieze, 2013, The promise of poop, Science, 341, 954, 10.1126/science.341.6149.954 Viswanathan, 2014, The trendy microbes, Gut Microbes, 5, 439, 10.4161/gmic.36381 Barbé, 2006, The use of clostridial spores for cancer treatment, J. Appl. Microbiol., 101, 571, 10.1111/j.1365-2672.2006.02886.x Nauts, 1980 Richardson, 1999, Coley toxins immunotherapy: a retrospective review, Altern. Ther. Health Med., 5, 42 Zacharski, 2005, Coley's toxin revisited: immunotherapy or plasminogen activator therapy of cancer?, J. Thromb. Haemost., 3, 424, 10.1111/j.1538-7836.2005.01110.x Malmgren, 1955, Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration, Cancer Res., 15, 473 Lambin, 1998, Colonisation of Clostridium in the body is restricted to hypoxic and necrotic areas of tumours, Anaerobe, 4, 183, 10.1006/anae.1998.0161 Yazawa, 2000, Bifidobacterium longum as a delivery system for therapy: selective localization and growth in hypoxic tumors, Cancer Gene Ther., 7, 269, 10.1038/sj.cgt.7700122 Chang, 2014, Salmonella as an innovative therapeutic antitumor agent, Int. J. Mol. Sci., 15, 14546, 10.3390/ijms150814546 Gericke, 1964, Oncolysis by Clostridia. II. Experiments on a tumor spectrum, Cancer Res., 24, 217 Thiele, 1964, Oncolysis by Clostridia. IV. Effect of nonpathogenic clostridial spores, Cancer Res., 24, 234 Bone, 1992, Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome), JAMA, 268, 3452, 10.1001/jama.1992.03490240060037 Dinarello, 1993, Anticytokine strategies in the treatment of the systemic inflammatory response syndrome, JAMA, 269, 1829, 10.1001/jama.1993.03500140081040 Somerville, 1996, A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide, J. Clin. Investig., 97, 359, 10.1172/JCI118423 Khan, 1998, A lethal role for lipid A in Salmonella infections, Mol. Microbiol., 29, 571, 10.1046/j.1365-2958.1998.00952.x Low, 1999, Lipid a mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo, Nat. Biotechnol., 17, 37, 10.1038/5205 Foligne, 2007, Prevention and treatment of colitis with Lactococcus lactis secreting the immunomodulatory Yersinia LcrV protein, Gastroenterology, 133, 862, 10.1053/j.gastro.2007.06.018 Steidler, 2000, Treatment of murine colitis by Lactococcus lactis secreting interleukin-10, Science, 289, 1352, 10.1126/science.289.5483.1352 Duan, 2015, Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes, Diabetes, 64, 1794, 10.2337/db14-0635 Dang, 2001, Combination bacteriolytic therapy for the treatment of experimental tumors, Proc. Natl. Acad. Sci. U. S. A., 98, 15155, 10.1073/pnas.251543698 Liu, 2006, Engineered vaginal lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N, Antimicrob. Agents Chemother., 50, 3250, 10.1128/AAC.00493-06 Zhou, 2016, Synthetic biology: bacteria synchronized for drug delivery, Nature, 536, 33, 10.1038/nature18915 Din, 2016, Synchronized cycles of bacterial lysis for in vivo delivery, Nature, 536, 81, 10.1038/nature18930 Forbes, 2010, Engineering the perfect (bacterial) cancer therapy, Nat. Rev. Cancer, 10, 785, 10.1038/nrc2934 Carlsen, 2014, Magnetic steering control of multi-cellular bio-hybrid microswimmers, Lab Chip, 14, 3850, 10.1039/C4LC00707G Carlsen, 2014, Bio-hybrid cell-based actuators for microsystems, Small, 10, 3831, 10.1002/smll.201400384 Claesen, 2015, Synthetic microbes as drug delivery systems, ACS Synth. Biol., 4, 358, 10.1021/sb500258b Braat, 2006, A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease, Clin. Gastroenterol. Hepatol., 4, 754, 10.1016/j.cgh.2006.03.028 A. N.V., Study to Assess Safety and Tolerability of AG013 in Oral Mucositis in Subjects Receiving Induction Chemotherapy for the Treatment of Cancers of the Head and Neck, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Jan 2014-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT00938080?term=bacteria&cond=cancer&intr=biological&rank=2, NLM Identifier: NCT00938080). N.C.I. (NCI), Treatment of patients with cancer with genetically modified Salmonella typhimurium bacteria, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (March 2008-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT00004988, NLM Identifier: NCT00004988). V. Pharmaceuticals, VNP20009 in treating patients with advanced solid tumors, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Jul 2013-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT00006254?term=VNP20009&rank=1, NLM Identifier: NCT00006254). V. Pharmaceuticals, VNP20009 in treating patients with advanced or metastatic solid tumors that have not responded to previous therapy, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Jul 2013-available from: https://clinicaltrials.gov/ct2/show/NCT00004216?term=VNP20009&rank=2, NLM Identifier: NCT00004216). U.o.M. Masonic Cancer Center, IL-2 expressing, attenuated Salmonella typhimurium in unresectable hepatic spread, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Jan 2016-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT01099631?term=salmonella&rank=1, NLM Identifier: NCT01099631). I. BioMed Valley Discoveries, Safety study of intratumoral injection of Clostridium novyi-NT spores to treat patients with solid tumors that have not responded to standard therapies, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (March 2016-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT01924689?term=C.+novyi-NT&rank=3 NLM Identifier: NCT01924689) B. University, A phase I/II evaluation of ADXS11-001, mitomycin, 5-fluorouracil (5-FU) and IMRT for anal cancer (276), in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (May 2016-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT01671488?term=ADXS11-001&rank=1, NLM Identifier: NCT01671488). G.O. Group, Vaccine therapy in treating patients with persistent or recurrent cervical cancer, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (May 2016-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT01266460?term=cervix+listeria&rank=1, NLM Identifier: NCT01266460). I. Advaxis, A study of pemetrexed maintenance with or without ADXS11-001 immunotherapy in patients with human papillomavirus positive (HPV+), NSCLC following first-line induction chemotherapy, in: Dec 2015–May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT02531854?term=ADXS11-001&rank=7, NLM Identifier: NCT02531854. I. Advaxis, Phase 2 Study of ADXS11-001 in subjects with anal cancer or cancer of the rectum, in: Dec 2015-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT02399813?term=ADXS11-001&rank=6, NLM Identifier: NCT02399813. I. Advaxis, Phase 1–2 study of ADXS11-001 or MEDI4736 alone or combo in cervical or HPV+ head & neck cancer, in: May 2016–May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT02291055?term=ADXS11-001&rank=5, NLM Identifier: NCT02291055. I. Advaxis, ADXS11-001 high dose HPV+ cervical cancer, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Apr 2016-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT02164461?term=ADXS11-001&rank=3, NLM Identifier: NCT02164461). A. Sikora, ADXS 11-001 vaccination prior to robotic surgery, HPV-positive oropharyngeal cancer, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Apr 2016–May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT02002182?term=ADXS11-001&rank=2, NLM Identifier: NCT02002182). U.o. Liverpool, Safety study of recombinant Listeria monocytogenes-based vaccine virus vaccine to treat oropharyngeal cancer (realistic:), in: May 2016–May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT01598792?term=Genetically+Modified+Bacteria&rank=4, NLM Identifier: NCT01598792. L. Janssen Research & Development, Safety & immunogenicity Of JNJ-64041757, live-attenuated double-deleted listeria immunotherapy, in subjects with non-small cell lung cancer, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Apr 2016-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT02592967?term=bacteria&cond=cancer&intr=biological&rank=15, NLM Identifier: NCT02592967). L. Janssen Research & Development, Safety & immunogenicity of JNJ-64041809, a live attenuated double-deleted listeria immunotherapy, in participants with metastatic castration-resistant prostate cancer, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Dec 2015-available from: https://clinicaltrials.gov/ct2/show/NCT02625857?term=bacteria&cond=cancer&intr=biological&rank=7, NLM Identifier: NCT02625857). I. Anza Therapeutics, Study of safety and tolerability of intravenous CRS-207 in adults with selected advanced solid tumors who have failed or who are not candidates for standard treatment, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Feb 2009-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT00585845?term=Genetically+Modified+Bacteria&rank=5, NLM Identifier: NCT00585845). I. Aduro Biotech, Safety and efficacy of Listeria in combination with chemotherapy as front-line treatment for malignant pleural mesothelioma, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Aug 2015-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT01675765?term=CRS-207&rank=5, NLM Identifier: NCT01675765). S.K.C.C. Center, GVAX pancreas vaccine (with CY) and CRS-207 with or without Nivolumab, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (MAr 2016-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT02243371?term=CRS-207&rank=1, NLM Identifier: NCT02243371). I. Aduro Biotech, Safety and efficacy of CRS-207 with epacadostat in platinum resistant ovarian, fallopian, or peritoneal cancer (SEASCAPE), in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (May 2016-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT02575807?term=CRS-207&rank=2, NLM Identifier: NCT02575807). I. Aduro Biotech, Safety and efficacy of combination Listeria/GVAX immunotherapy in pancreatic cancer, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Jan 2016-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT01417000?term=CRS-207&rank=4, NLM Identifier: NCT01417000). I. Aduro Biotech, Safety and efficacy of combination Listeria/GVAX pancreas vaccine in the pancreatic cancer setting (ECLIPSE), in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Aug 2015-available from: https://clinicaltrials.gov/ct2/show/NCT02004262?term=CRS-207&rank=6, NLM Identifier: NCT02004262). H. Biologics, A phase 1/2 study of HS-410 in patients with non-muscle invasive bladder cancer after TURBT, in: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), (Mar 2016-May 2016, available from: https://clinicaltrials.gov/ct2/show/NCT02010203?term=bacteria&cond=cancer&intr=biological&rank=3, NLM Identifier: NCT02010203). Sowa, 2005, Direct observation of steps in rotation of the bacterial flagellar motor, Nature, 437, 916, 10.1038/nature04003 Martel, 2012, Bacterial microsystems and microrobots, Biomed. Microdevices, 14, 1033, 10.1007/s10544-012-9696-x Kearns, 2010, A field guide to bacterial swarming motility, Nat. Rev. Microbiol., 8, 634, 10.1038/nrmicro2405 Goldstein, 2008, Evolution of taxis responses in virtual bacteria: non-adaptive dynamics, PLoS Comput. Biol., 4, e1000084, 10.1371/journal.pcbi.1000084 Taylor, 1999, Aerotaxis and other energy-sensing behavior in bacteria, Annu. Rev. Microbiol., 53, 103, 10.1146/annurev.micro.53.1.103 Taniguchi, 2016, Tumor-targeting therapy using gene-engineered anaerobic-nonpathogenic Bifidobacterium longum, Methods Mol. Biol., 1409, 49, 10.1007/978-1-4939-3515-4_5 Yang, 2012, Opposite responses by different chemoreceptors set a tunable preference point in Escherichia coli pH taxis, Mol. Microbiol., 86, 1482, 10.1111/mmi.12070 Panteli, 2016, Engineered bacteria detect spatial profiles in glucose concentration within solid tumor cell masses, Biotechnol. Bioeng., 10.1002/bit.26006 Seavey, 2009, A novel human Her-2/neu chimeric molecule expressed by Listeria monocytogenes can elicit potent HLA-A2 restricted CD8-positive T cell responses and impact the growth and spread of Her-2/neu-positive breast tumors, Clin. Cancer Res., 15, 924, 10.1158/1078-0432.CCR-08-2283 Theys, 2006, Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo, Br. J. Cancer, 95, 1212, 10.1038/sj.bjc.6603367 Du, 2015, A novel lumazine synthase molecule from Brucella significantly promotes the immune-stimulation effects of antigenic protein, Genet. Mol. Res., 14, 13084, 10.4238/2015.October.26.4 Lehouritis, 2016, Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria, J. Control. Release, 222, 9, 10.1016/j.jconrel.2015.11.030 Friend, 1984, A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria, J. Med. Chem., 27, 261, 10.1021/jm00369a005 Rubinstein, 1990, Microbially controlled drug delivery to the colon, Biopharm. Drug Dispos., 11, 465, 10.1002/bdd.2510110602 Vanneman, 2012, Combining immunotherapy and targeted therapies in cancer treatment, Nat. Rev. Cancer, 12, 237, 10.1038/nrc3237 al-Ramadi, 2009, Potent anti-tumor activity of systemically-administered IL2-expressing Salmonella correlates with decreased angiogenesis and enhanced tumor apoptosis, Clin. Immunol., 130, 89, 10.1016/j.clim.2008.08.021 Barbe, 2005, Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment, FEMS Microbiol. Lett., 246, 67, 10.1016/j.femsle.2005.03.037 Barnett, 2005, Attenuated Salmonella typhimurium invades and decreases tumor burden in neuroblastoma, J. Pediatr. Surg., 40, 993, 10.1016/j.jpedsurg.2005.03.015 Feltis, 2002, Liver and circulating NK1.1+CD3- cells are increased in infection with attenuated Salmonella typhimurium and are associated with reduced tumor in murine liver cancer, J. Surg. Res., 107, 101, 10.1016/S0022-4804(02)96428-0 Saltzman, 1996, Attenuated Salmonella typhimurium containing interleukin-2 decreases MC-38 hepatic metastases: a novel anti-tumor agent, Cancer Biother. Radiopharm., 11, 145, 10.1089/cbr.1996.11.145 Saltzman, 1997, Antitumor mechanisms of attenuated Salmonella typhimurium containing the gene for human interleukin-2: a novel antitumor agent?, J. Pediatr. Surg., 32, 301, 10.1016/S0022-3468(97)90198-6 Sorenson, 2008, Attenuated Salmonella typhimurium with interleukin 2 gene prevents the establishment of pulmonary metastases in a model of osteosarcoma, J. Pediatr. Surg., 43, 1153, 10.1016/j.jpedsurg.2008.02.048 Rosano, 2014, Recombinant protein expression in Escherichia coli: advances and challenges, Front. Microbiol., 5, 172, 10.3389/fmicb.2014.00172 Schaffner, 1980, Direct transfer of cloned genes from bacteria to mammalian-cells, Proc. Natl. Acad. Sci. U. S. A. Biol. Sci., 77, 2163, 10.1073/pnas.77.4.2163 Palffy, 2006, Bacteria in gene therapy: bactofection versus alternative gene therapy, Gene Ther., 13, 101, 10.1038/sj.gt.3302635 Llosa, 2012, New perspectives into bacterial DNA transfer to human cells, Trends Microbiol., 20, 355, 10.1016/j.tim.2012.05.008 Yazawa, 2001, Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors, Breast Cancer Res. Treat., 66, 165, 10.1023/A:1010644217648 Fu, 2005, Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer, Cancer Gene Ther., 12, 133, 10.1038/sj.cgt.7700758 Lee, 2007, Effect of interfacial interaction on the cross-sectional morphology of tobacco mosaic virus using GISAXS, Langmuir, 23, 11157, 10.1021/la7009989 Xiao, 2014, The antitumor effect of suicide gene therapy using Bifidobacterium infantise-mediated herpes simplex virus thymidine kinase/ganciclovir in a nude mice model of renal cell carcinoma, Urology, 84, 10.1016/j.urology.2014.05.020 Jiang, 2013, Proteomic analysis of bladder cancer by iTRAQ after Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene treatment, Biol. Chem., 394, 1333, 10.1515/hsz-2013-0201 Yin, 2013, Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene therapy induces both extrinsic and intrinsic apoptosis in a rat model of bladder cancer, Cancer Gene Ther., 20, 77, 10.1038/cgt.2012.86 Yi, 2005, Antitumor effect of cytosine deaminase/5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma, Acta Pharmacol. Sin., 26, 629, 10.1111/j.1745-7254.2005.00094.x Guimaraes, 2005, Internalin-expres sing Lactococcus lactis is able to invade small intestine of guinea pigs and deliver DNA into mammalian epithelial cells, Microbes Infect., 7, 836, 10.1016/j.micinf.2005.02.012 Guimaraes, 2006, Use of native lactococci as vehicles for delivery of DNA into mammalian epithelial cells, Appl. Environ. Microbiol., 72, 7091, 10.1128/AEM.01325-06 Chatel, 2008, In vivo transfer of plasmid from food-grade transiting lactococci to murine epithelial cells, Gene Ther., 15, 1184, 10.1038/gt.2008.59 McLaughlin, 2013, A mutant in the Listeria monocytogenes Fur-regulated virulence locus (frvA) induces cellular immunity and confers protection against listeriosis in mice, J. Med. Microbiol., 62, 185, 10.1099/jmm.0.049114-0 Tangney, 2010, The use of Listeria monocytogenes as a DNA delivery vector for cancer gene therapy, Bioengineered Bugs, 1, 284, 10.4161/bbug.1.4.11725 Dietrich, 1998, Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes, Nat. Biotechnol., 16, 181, 10.1038/nbt0298-181 Schoen, 2005, Bacterial delivery of functional messenger RNA to mammalian cells, Cell. Microbiol., 7, 709, 10.1111/j.1462-5822.2005.00507.x van Pijkeren, 2010, A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy, Hum. Gene Ther., 21, 405, 10.1089/hum.2009.022 Grillot-Courvalin, 2002, Wild-type intracellular bacteria deliver DNA into mammalian cells, Cell. Microbiol., 4, 177, 10.1046/j.1462-5822.2002.00184.x Grillot-Courvalin, 1999, Bacteria as gene delivery vectors for mammalian cells — commentary, Curr. Opin. Biotechnol., 10, 477, 10.1016/S0958-1669(99)00013-0 Grillot-Courvalin, 1998, Functional gene transfer from intracellular bacteria to mammalian cells, Nat. Biotechnol., 16, 862, 10.1038/nbt0998-862 Courvalin, 1995, Gene transfer from bacteria to mammalian cells, Comptes Rendus De L Academie Des Sciences Serie Iii-Sciences De La Vie-Life Sciences, 318, 1207 Castagliuolo, 2005, Engineered E. coli delivers therapeutic genes to the colonic mucosa, Gene Ther., 12, 1070, 10.1038/sj.gt.3302493 Critchley, 2004, Potential therapeutic applications of recombinant, invasive E. coli, Gene Therapy, 11, 1224, 10.1038/sj.gt.3302281 Larsen, 2008, Bactofection of lung epithelial cells in vitro and in vivo using a genetically modified Escherichia coli, Gene Ther., 15, 434, 10.1038/sj.gt.3303090 Ninomiya, 2014, Effect of ultrasound irradiation on bacterial internalization and bacteria-mediated gene transfer to cancer cells, Ultrason. Sonochem., 21, 1187, 10.1016/j.ultsonch.2013.12.005 Jones, 2013, Polymyxin B treatment improves bactofection efficacy and reduces cytotoxicity, Mol. Pharm., 10, 4301, 10.1021/mp4003927 Narayanan, 2013, Escherichia coli bactofection using lipofectamine, Anal. Biochem., 439, 142, 10.1016/j.ab.2013.04.010 Heisig, 2011, Specific antibody-receptor interactions trigger InlAB-independent uptake of listeria monocytogenes into tumor cell lines, BMC Microbiol., 11, 10.1186/1471-2180-11-163 Chang, 2011, Engineering of Escherichia coli for targeted delivery of transgenes to HER2/neu-positive tumor cells, Biotechnol. Bioeng., 108, 1662, 10.1002/bit.23095 Michon, 2015, Surface display of an anti-DEC-205 single chain Fv fragment in Lactobacillus plantarum increases internalization and plasmid transfer to dendritic cells in vitro and in vivo, Microb. Cell Factories, 14, 95, 10.1186/s12934-015-0366-6 Stritzker, 2008, Prodrug converting enzyme gene delivery by L-monocytogenes, BMC Cancer, 8, 10.1186/1471-2407-8-94 Li, 2012, The future of human DNA vaccines, J. Biotechnol., 162, 171, 10.1016/j.jbiotec.2012.08.012 Okuda, 2014, Recent developments in preclinical DNA vaccination, Vaccines (Basel), 2, 89, 10.3390/vaccines2010089 Sciaranghella, 2011, A live attenuated Listeria monocytogenes vaccine vector expressing SIV Gag is safe and immunogenic in macaques and can be administered repeatedly, Vaccine, 29, 476, 10.1016/j.vaccine.2010.10.072 Gentschev, 2001, Recombinant attenuated bacteria for the delivery of subunit vaccines, Vaccine, 19, 2621, 10.1016/S0264-410X(00)00502-8 Wood, 2008, Cancer immunotherapy using Listeria monocytogenes and listerial virulence factors, Immunol. Res., 42, 233, 10.1007/s12026-008-8087-0 Radford, 2002, A recombinant E. coli vaccine to promote MHC class I-dependent antigen presentation: Application to cancer immunotherapy, Gene Ther., 9, 1455, 10.1038/sj.gt.3301812 Gardlik, 2013, Therapeutic DNA vaccination and RNA interference in inflammatory bowel disease, Int. J. Mol. Med., 32, 492, 10.3892/ijmm.2013.1388 Gardlik, 2010, Bacterial vectors and delivery systems in cancer therapy, IDrugs, 13, 701 Lee, 2005, Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model, Cancer Gene Ther., 12, 175, 10.1038/sj.cgt.7700777 Pilgrim, 2003, Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery, Gene Ther., 10, 2036, 10.1038/sj.gt.3302105 Fu, 2008, Synergistic antitumoral effects of human telomerase reverse transcriptase-mediated dual-apoptosis-related gene vector delivered by orally attenuated Salmonella enterica Serovar typhimurium in murine tumor models, J. Gene Med., 10, 690, 10.1002/jgm.1191 Ganai, 2009, Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice, Br. J. Cancer, 101, 1683, 10.1038/sj.bjc.6605403 Palffy, 2011, Salmonella-mediated gene therapy in experimental colitis in mice, Exp. Biol. Med., 236, 177, 10.1258/ebm.2010.010277 Gardlik, 2014, Effects of bacteria-mediated reprogramming and antibiotic pretreatment on the course of colitis in mice, Mol. Med. Rep., 10, 983, 10.3892/mmr.2014.2244 Xiang, 2006, Short hairpin RNA-expressing bacteria elicit RNA interference in mammals, Nat. Biotechnol., 24, 697, 10.1038/nbt1211 Zhang, 2007, Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs, Cancer Res., 67, 5859, 10.1158/0008-5472.CAN-07-0098 Yavuz, 2011, Glycomimicry: display of fucosylation on the lipo-oligosaccharide of recombinant Escherichia coli K12, Glycoconj. J., 28, 39, 10.1007/s10719-010-9322-1 Ilg, 2010, Glycomimicry: display of the GM3 sugar epitope on Escherichia coli and Salmonella enterica sv typhimurium, Glycobiology, 20, 1289, 10.1093/glycob/cwq091 Paton, 2006, Designer probiotics for prevention of enteric infections, Nat. Rev. Microbiol., 4, 193, 10.1038/nrmicro1349 Buchholz, 1763, German outbreak of Escherichia coli O104: H4 associated with sprouts, N. Engl. J. Med., 365 Paton, 2000, A new biological agent for treatment of Shiga toxigenic Escherichia coli infections and dysentery in humans, Nat. Med., 6, 265, 10.1038/73111 Focareta, 2006, A recombinant probiotic for treatment and prevention of cholera, Gastroenterology, 130, 1688, 10.1053/j.gastro.2006.02.005 Paton, 2005, Recombinant probiotics for treatment and prevention of enterotoxigenic Escherichia coli diarrhea, Gastroenterology, 128, 1219, 10.1053/j.gastro.2005.01.050 Kitov, 2000, Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands, Nature, 403, 669, 10.1038/35001095 Storz, 2010 Pastrana, 2011, Optogenetics: controlling cell function with light, Nat. Methods, 8, 24, 10.1038/nmeth.f.323 Motta-Mena, 2014, An optogenetic gene expression system with rapid activation and deactivation kinetics, Nat. Chem. Biol., 10, 196, 10.1038/nchembio.1430 Polstein, 2015, A light-inducible CRISPR-Cas9 system for control of endogenous gene activation, Nat. Chem. Biol., 11, 198, 10.1038/nchembio.1753 Olson, 2014, Optogenetic characterization methods overcome key challenges in synthetic and systems biology, Nat. Chem. Biol., 10, 502, 10.1038/nchembio.1559 Sun, 2011, Bacterial magnetosome: a novel biogenetic magnetic targeted drug carrier with potential multifunctions, J. Nanomater., 2011, 9, 10.1155/2011/469031 Faivre, 2008, Magnetotactic bacteria and magnetosomes, Chem. Rev., 108, 4875, 10.1021/cr078258w Felfoul, 2013, Assessment of navigation control strategy for magnetotactic bacteria in microchannel: Toward targeting solid tumors, Biomed. Microdevices, 15, 1015, 10.1007/s10544-013-9794-4 Chen, 2014, Construction of a microrobot system using magnetotactic bacteria for the separation of Staphylococcus aureus, Biomed. Microdevices, 16, 761, 10.1007/s10544-014-9880-2 Martel, 2006, Towards MRI-controlled ferromagnetic and MC-1 magnetotactic bacterial carriers for targeted therapies in arteriolocapillar networks stimulated by tumoral angiogenesis, Engineering in Medicine and Biology Society, 2006, 3399 Felfoul, 2016, Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions, Nat. Nanotechnol., 10.1038/nnano.2016.137 Tang, 2012, Bacterial magnetic particles as a novel and efficient gene vaccine delivery system, Gene Ther., 19, 1187, 10.1038/gt.2011.197 Brown, 2004, Exploiting tumour hypoxia in cancer treatment, Nat. Rev. Cancer, 4, 437, 10.1038/nrc1367 Giaccia, 2003, HIF-1 as a target for drug development, Nat. Rev. Drug Discov., 2, 803, 10.1038/nrd1199 Semenza, 2003, Targeting HIF-1 for cancer therapy, Nat. Rev. Cancer, 3, 721, 10.1038/nrc1187 Lemmon, 1997, Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment, Gene Ther., 4, 791, 10.1038/sj.gt.3300468 Fox, 1996, Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia, Gene Ther., 3, 173 Stritzker, 2007, Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice, Int J Med Microbiol, 297, 151, 10.1016/j.ijmm.2007.01.008 Anderson, 2006, Environmentally controlled invasion of cancer cells by engineered bacteria, J. Mol. Biol., 355, 619, 10.1016/j.jmb.2005.10.076 Xiang, 2006, Short hairpin RNA–expressing bacteria elicit RNA interference in mammals, Nat. Biotechnol., 24, 697, 10.1038/nbt1211 Yang, 2008, Oral administration of attenuated S. typhimurium carrying shRNA-expressing vectors as a cancer therapeutic, Cancer Biol. Ther., 7, 145, 10.4161/cbt.7.1.5195 Loeffler, 2008, IL-18-producing Salmonella inhibit tumor growth, Cancer Gene Ther., 15, 787, 10.1038/cgt.2008.48 Loeffler, 2009, Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth, Cancer Immunol. Immunother., 58, 769, 10.1007/s00262-008-0555-9 Loeffler, 2007, Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth, Proc. Natl. Acad. Sci., 104, 12879, 10.1073/pnas.0701959104 Zhang, 2010, Tumor pH and its measurement, J. Nucl. Med., 51, 1167, 10.2967/jnumed.109.068981 Kluger, 1979, Fever and reduced iron: their interaction as a host defense response to bacterial infection, Science, 203, 374, 10.1126/science.760197 Zhuang, 2015, pH-taxis of biohybrid microsystems, Sci. Report., 5, 11403, 10.1038/srep11403 Shapiro, 2012, Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing, mBio, 3, 10.1128/mBio.00238-12 Soutourina, 2002, Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein, Microbiology, 148, 1543, 10.1099/00221287-148-5-1543 Montanaro, 2015, Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface, Drug Des. Devel. Ther., 9, 3741 Langemann, 2010, The bacterial ghost platform system: production and applications, Bioengineered Bugs, 1, 326, 10.4161/bbug.1.5.12540 Henrich, 1982, Lysis of Escherichia coli by induction of cloned phi X174 genes, Mol. Gen. Genet. MGG, 185, 493, 10.1007/BF00334146 Bläsi, 1989, Evidence for membrane-bound oligomerization of bacteriophage phi X174 lysis protein-E, J. Biol. Chem., 264, 4552, 10.1016/S0021-9258(18)83778-4 Witte, 1989, Biochemical characterization of phiX174-protein-E-mediated lysis of Escherichia coli, Eur. J. Biochem., 180, 393, 10.1111/j.1432-1033.1989.tb14661.x Witte, 1992, Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli, Arch. Microbiol., 157, 381, 10.1007/BF00248685 Tabrizi, 2004, Bacterial ghosts — biological particles as delivery systems for antigens, nucleic acids and drugs, Curr. Opin. Biotechnol., 15, 530, 10.1016/j.copbio.2004.10.004 Huter, 1999, Bacterial ghosts as drug carrier and targeting vehicles, J. Control. Release, 61, 51, 10.1016/S0168-3659(99)00099-1 Haslberger, 2000, Activation, stimulation and uptake of bacterial ghosts in antigen presenting cells, J. Biotechnol., 83, 57, 10.1016/S0168-1656(00)00298-4 Paukner, 2003, Sealed bacterial ghosts—novel targeting vehicles for advanced drug delivery of water-soluble substances, J. Drug Target., 11, 151 Paukner, 2004, Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco-2 cells, J. Control. Release, 94, 63, 10.1016/j.jconrel.2003.09.010 Stein, 2013, In vitro and in vivo uptake study of Escherichia coli Nissle 1917 bacterial ghosts: cell-based delivery system to target ocular surface diseases, Invest. Ophthalmol. Vis. Sci., 54, 6326, 10.1167/iovs.13-12044 Koller, 2013, Modulation of bacterial ghosts—induced nitric oxide production in macrophages by bacterial ghost-delivered resveratrol, FEBS J., 280, 1214, 10.1111/febs.12112 Adler, 1967, Miniature Escherichia coli cells deficient in DNA, Proc. Natl. Acad. Sci. U. S. A., 57, 321, 10.1073/pnas.57.2.321 Di Ventura, 2011, Self-organized partitioning of dynamically localized proteins in bacterial cell division, Mol. Syst. Biol., 7, 457, 10.1038/msb.2010.111 Khachatourians, 1973, Cell growth and division in Escherichia coli: a common genetic control involved in cell division and minicell formation, J. Bacteriol., 116, 226, 10.1128/JB.116.1.226-229.1973 Inselburg, 1974, Replication of colicin E1 plasmid DNA in minicells from a unique replication initiation site, Proc. Natl. Acad. Sci. U. S. A., 71, 2256, 10.1073/pnas.71.6.2256 MacDiarmid, 2009, Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug, Nat. Biotechnol., 27, 643, 10.1038/nbt.1547 Kudela, 2010, Bacterial ghosts (BGs)—advanced antigen and drug delivery system, Vaccine, 28, 5760, 10.1016/j.vaccine.2010.06.087 Eisenbach, 2001 Sitti, 2009, Miniature devices voyage of the microrobots, Nature, 458, 1121, 10.1038/4581121a Sitti, 2007, Microscale and nanoscale robotics systems — characteristics, state of the art, and grand challenges, IEEE Robot. Autom. Mag., 14, 53, 10.1109/MRA.2007.339606 Diller, 2013, Micro-scale mobile robotics, Found. Trends Robot., 2, 143, 10.1561/2300000023 Singh, 2016, Targeted drug delivery and imaging using mobile milli/microrobots: a promising future towards theranostic pharmaceutical design, Curr. Pharm. Des., 22, 1418, 10.2174/1381612822666151210124326 Kim, 2012, Chemotactic steering of bacteria propelled microbeads, Biomed. Microdevices, 14, 1009, 10.1007/s10544-012-9701-4 Zijnge, 2010, Oral biofilm architecture on natural teeth, PloS One, 5, 10.1371/journal.pone.0009321 Rosan, 2000, Dental plaque formation, Microbes Infect., 2, 1599, 10.1016/S1286-4579(00)01316-2 Subramani, 2009, Biofilm on dental implants: a review of the literature, Int. J. Oral Maxillofac. Implants, 24, 616 Teughels, 2006, Effect of material characteristics and/or surface topography on biofilm development, Clin. Oral Implants Res., 17, 68, 10.1111/j.1600-0501.2006.01353.x Van Houdt, 2010, Biofilm formation and the food industry, a focus on the bacterial outer surface, J. Appl. Microbiol., 109, 1117, 10.1111/j.1365-2672.2010.04756.x Franks, 2010, Bacterial biofilms: the powerhouse of a microbial fuel cell, Biofuels, 1, 589, 10.4155/bfs.10.25 Wood, 2011, Engineering biofilm formation and dispersal, Trends Biotechnol., 29, 87, 10.1016/j.tibtech.2010.11.001 Meadows, 1965, Attachment of marine- and fresh-water bacteria to solid surfaces, Nature, 207, 1108, 10.1038/2071108a0 Kane, 1999, Patterning proteins and cells using soft lithography, Biomaterials, 20, 2363, 10.1016/S0142-9612(99)00165-9 Lichter, 2008, Substrata mechanical stiffness can regulate adhesion of viable bacteria, Biomacromolecules, 9, 1571, 10.1021/bm701430y Zita, 1997, Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ, FEMS Microbiol. Lett., 152, 299, 10.1111/j.1574-6968.1997.tb10443.x Behkam, 2007, Bacterial flagella-based propulsion and on/off motion control of microscale objects, Appl. Phys. Lett., 90, 10.1063/1.2431454 Huh, 2015, 1848 Traore, 2014, Biomanufacturing and self-propulsion dynamics of nanoscale bacteria-enabled autonomous delivery systems, Appl. Phys. Lett., 105, 10.1063/1.4900641 Nguyen, 2016, Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella typhimurium), Sensors Actuators B Chem., 224, 217, 10.1016/j.snb.2015.09.034 Taherkhani, 2014, Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents, ACS Nano, 8, 5049, 10.1021/nn5011304 Park, 2010, Motility enhancement of bacteria actuated microstructures using selective bacteria adhesion, Lab Chip, 10, 1706, 10.1039/c000463d Cho, 2012, Development of bacteria-based microrobot using biocompatible poly(ethylene glycol), Biomed. Microdevices, 14, 1019, 10.1007/s10544-012-9704-1 Behkam, 2008, Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads, Appl. Phys. Lett., 93, 223901, 10.1063/1.3040318 Singh, 2016, Patterned and specific attachment of bacteria on biohybrid bacteria-driven microswimmers, Adv. Healthcare Mater. Li, 2015, A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy, Biotechnol. Bioeng., 112, 1623, 10.1002/bit.25555 Barroso, 2015, Optical assembly of bio-hybrid micro-robots, Biomed. Microdevices, 17, 1, 10.1007/s10544-015-9933-1 Weibel, 2005, Microoxen: microorganisms to move microscale loads, Proc. Natl. Acad. Sci. U. S. A., 102, 11963, 10.1073/pnas.0505481102 Akin, 2007, Bacteria-mediated delivery of nanoparticles and cargo into cells, Nat. Nanotechnol., 2, 441, 10.1038/nnano.2007.149 Fernandes, 2011, Enabling cargo-carrying bacteria via surface attachment and triggered release, Small, 7, 588, 10.1002/smll.201002036 Rabanel, 2014, Assessment of PEG on polymeric particles surface, a key step in drug carrier translation, J. Control. Release, 185, 71, 10.1016/j.jconrel.2014.04.017 Kolate, 2014, PEG - A versatile conjugating ligand for drugs and drug delivery systems, J. Control. Release, 192, 67, 10.1016/j.jconrel.2014.06.046 Zhang, 2013, Propulsion of liposomes using bacterial motors, Nanotechnology, 24, 185103, 10.1088/0957-4484/24/18/185103 Kojima, 2013, Construction and evaluation of bacteria-driven liposome, Sensors Actuators B Chem., 183, 395, 10.1016/j.snb.2013.03.127 Edwards, 2014, Swimming characterization of Serratia marcescens for bio-hybrid micro-robotics, J. Micro-Bio Robot., 9, 47, 10.1007/s12213-014-0072-1 Champion, 2006, Role of target geometry in phagocytosis, Proc. Natl. Acad. Sci. U. S. A., 103, 4930, 10.1073/pnas.0600997103 Geng, 2007, Shape effects of filaments versus spherical particles in flow and drug delivery, Nat. Nanotechnol., 2, 249, 10.1038/nnano.2007.70 Jemish, 2015, Nano and micro architectures for self-propelled motors, Sci. Technol. Adv. Mater., 16, 014802, 10.1088/1468-6996/16/1/014802 Yoo, 2014, Motility control of bacteria-actuated biodegradable polymeric microstructures by selective adhesion methods, Micromachines, 5, 1287, 10.3390/mi5041287 Sahari, 2014, Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape, Biomed. Microdevices, 16, 717, 10.1007/s10544-014-9876-y Sahari, 2012, Effect of body shape on the motile behavior of bacteria-powered swimming microrobots (BacteriaBots), Biomed. Microdevices, 14, 999, 10.1007/s10544-012-9712-1 Higashi, 2014, A self-swimming microbial robot using microfabricated nanofibrous hydrogel, Sensors Actuators B Chem., 202, 301, 10.1016/j.snb.2014.05.068 Uthaman, 2016, Preparation of Engineered Salmonella Typhimurium-Driven Hyaluronic-Acid-Based Microbeads with Both Chemotactic and Biological Targeting Towards Breast Cancer Cells for Enhanced Anticancer Therapy, Adv Healthc Mater., 21;5, 288, 10.1002/adhm.201500556 Park, 2015, Effect of chitosan coating on a bacteria-based alginate microrobot, Biotechnol. Bioeng., 112, 769, 10.1002/bit.25476 Edwards, 2013, Near and far-wall effects on the three-dimensional motion of bacteria-driven microbeads, Appl. Phys. Lett., 102, 143701, 10.1063/1.4801810 Arabagi, 2011, Modeling of stochastic motion of bacteria propelled spherical microbeads, J. Appl. Phys., 109, 114702, 10.1063/1.3592970 Kim, 2011, Chemotactic behavior and dynamics of bacteria propelled microbeads, 1674 Zhuang, 2014, Analytical modeling and experimental characterization of chemotaxis in Serratia marcescens, Phys. Rev. E, 89, 052704, 10.1103/PhysRevE.89.052704 Sourjik, 2012, Responding to chemical gradients: bacterial chemotaxis, Curr. Opin. Cell Biol., 24, 262, 10.1016/j.ceb.2011.11.008 Luo, 2016, Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy, Nano Lett., 16, 3493, 10.1021/acs.nanolett.6b00262 Zhuang, 2016, Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers, Sci. Report., 6, 32135, 10.1038/srep32135 Park, 2014, Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber, Biotechnol. Bioeng., 111, 134, 10.1002/bit.25007 Traore, 2011, Computational and experimental study of chemotaxis of an ensemble of bacteria attached to a microbead, Phys. Rev. E, 84, 10.1103/PhysRevE.84.061908 Suh, 2016, Bacterial chemotaxis-enabled autonomous sorting of nanoparticles of comparable sizes, Lab Chip, 16, 1254, 10.1039/C6LC00059B Park, 2013, New paradigm for tumor theranostic methodology using bacteria-based microrobot, Sci. Rep., 3, 10.1038/srep03394 Sahari, 2014, Toward development of an autonomous network of bacteria-based delivery systems (BacteriaBots): spatiotemporally high-throughput characterization of bacterial quorum-sensing response, Anal. Chem., 86, 11489, 10.1021/ac5021003 Bennet, 2014, Influence of magnetic fields on magneto-aerotaxis, PLoS One, 9, 10.1371/journal.pone.0101150 Cartmell, 2002, Route of administration differentially affects fevers induced by Gram-negative and Gram-positive pyrogens in rabbits, Exp. Physiol., 87, 391, 10.1113/eph8702298 Cortes-Perez, 2007, Influence of the route of immunization and the nature of the bacterial vector on immunogenicity of mucosal vaccines based on lactic acid bacteria, Vaccine, 25, 6581, 10.1016/j.vaccine.2007.06.062 Crull, 2011, Influence of infection route and virulence factors on colonization of solid tumors by Salmonella enterica serovar typhimurium, FEMS Immunol. Med. Microbiol., 62, 75, 10.1111/j.1574-695X.2011.00790.x Roberts, 2014, Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses, Sci. Transl. Med., 6, 10.1126/scitranslmed.3008982 Zhao, 2005, Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium, Proc. Natl. Acad. Sci. U. S. A., 102, 755, 10.1073/pnas.0408422102 Rosenberg, 2012, Neurological diseases in relation to the blood–brain barrier, J. Cereb. Blood Flow Metab., 32, 1139, 10.1038/jcbfm.2011.197 van Sorge, 2012, Defense at the border: the blood–brain barrier versus bacterial foreigners, Future Microbiol, 7, 383, 10.2217/fmb.12.1 Zwagerman, 2014, Intratumoral Clostridium novyi as a potential treatment for solid necrotic brain tumors, Neurosurgery, 75, N17, 10.1227/01.neu.0000457197.94533.68 Sant, 2012, Microfabrication technologies for oral drug delivery, Adv. Drug Deliv. Rev., 64, 496, 10.1016/j.addr.2011.11.013 Sastry, 2000, Recent technological advances in oral drug delivery — a review, Pharm. Sci. Technol. Today, 3, 138, 10.1016/S1461-5347(00)00247-9 Devriendt, 2012, Crossing the barrier: targeting epithelial receptors for enhanced oral vaccine delivery, J. Control. Release, 160, 431, 10.1016/j.jconrel.2012.02.006 Correia-Pinto, 2013, Vaccine delivery carriers: insights and future perspectives, Int. J. Pharm., 440, 27, 10.1016/j.ijpharm.2012.04.047 Urbanska, 2016, What's next for gastrointestinal disorders: no needles?, J. Control. Release, 221, 48, 10.1016/j.jconrel.2015.11.031 Berlec, 2012, Lactic acid bacteria as oral delivery systems for biomolecules, Pharmazie, 67, 891 Hanson, 2014, Oral delivery of IL-27 recombinant bacteria attenuates immune colitis in mice, Gastroenterology, 146, 10.1053/j.gastro.2013.09.060 Robert, 2014, Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice, Diabetes, 63, 2876, 10.2337/db13-1236 Guo, 2015, The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model, Vaccine, 33, 1586, 10.1016/j.vaccine.2015.02.006 Ahmed, 2014, Oral immunization with Lactococcus lactis-expressing EspB induces protective immune responses against Escherichia coli O157:H7 in a murine model of colonization, Vaccine, 32, 3909, 10.1016/j.vaccine.2014.05.054 Wei, 2016, Oral Bifidobacterium longum expressing alpha-melanocyte-stimulating hormone to fight experimental colitis, Drug Deliv., 23, 2058, 10.3109/10717544.2015.1122672 Takei, 2014, Oral administration of genetically modified Bifidobacterium displaying HCV-NS3 multi-epitope fusion protein could induce an HCV-NS3-specific systemic immune response in mice, Vaccine, 32, 3066, 10.1016/j.vaccine.2014.03.022 Yu, 2012, Bifidobacterium as an oral delivery carrier of interleukin-12 for the treatment of Coxsackie virus B3-induced myocarditis in the Balb/c mice, Int. Immunopharmacol., 12, 125, 10.1016/j.intimp.2011.10.022 Ning, 2009, Oral delivery of DNA vaccine encoding VP28 against white spot syndrome virus in crayfish by attenuated Salmonella typhimurium, Vaccine, 27, 1127, 10.1016/j.vaccine.2008.11.075 Chen, 2009, Oral delivery of tumor-targeting Salmonella exhibits promising therapeutic efficacy and low toxicity, Cancer Sci., 100, 2437, 10.1111/j.1349-7006.2009.01337.x Grillot-Courvalin, 2009, Development of a therapeutic RNAi delivery system using nonpathogenic bacteria expressing inv and hly: transkingdom RNA interference (tkRNAi), Hum. Gene Ther., 20, 670 Ivory, 2008, Oral delivery of Lactobacillus casei Shirota modifies allergen-induced immune responses in allergic rhinitis, Clin. Exp. Allergy, 38, 1282, 10.1111/j.1365-2222.2008.03025.x Huq, 2013, Encapsulation of probiotic bacteria in biopolymeric system, Crit. Rev. Food Sci. Nutr., 53, 909, 10.1080/10408398.2011.573152 Sohail, 2011, Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method, Int. J. Food Microbiol., 145, 162, 10.1016/j.ijfoodmicro.2010.12.007 Urbanska, 2007, Live encapsulated Lactobacillus acidophilus cells in yogurt for therapeutic oral delivery: preparation and in vitro analysis of alginate-chitosan microcapsules, Can. J. Physiol. Pharmacol., 85, 884, 10.1139/Y07-057 Jiang, 2014, Oral delivery of probiotic expressing M cell homing peptide conjugated BmpB vaccine encapsulated into alginate/chitosan/alginate microcapsules, Eur. J. Pharm. Biopharm., 88, 768, 10.1016/j.ejpb.2014.07.003 Mei, 2014, Novel intestinal-targeted Ca-alginate-based carrier for pH-responsive protection and release of lactic acid bacteria, ACS Appl. Mater. Interfaces, 6, 5962, 10.1021/am501011j Cook, 2013, Layer-by-layer coating of alginate matrices with chitosan-alginate for the improved survival and targeted delivery of probiotic bacteria after oral administration, J. Mater. Chem. B, 1, 52, 10.1039/C2TB00126H Lin, 2008, In vitro and in vivo characterization of alginate-chitosan-alginate artificial microcapsules for therapeutic oral delivery of live bacterial cells, J. Biosci. Bioeng., 105, 660, 10.1263/jbb.105.660 Danino, 2015, Programmable probiotics for detection of cancer in urine, Sci. Transl. Med., 7, 10.1126/scitranslmed.aaa3519 Bermudes, 2000, Tumor-targeted Salmonella: highly selective delivery vectors, Adv. Exp. Med. Biol., 57 Paton, 2012, Bioengineered microbes in disease therapy, Trends Mol. Med., 18, 417, 10.1016/j.molmed.2012.05.006 Lee, 2012, Engineering bacteria toward tumor targeting for cancer treatment: current state and perspectives, Appl. Microbiol. Biotechnol., 93, 517, 10.1007/s00253-011-3695-3 Liu, 2012, Bacteria-mediated in vivo delivery of quantum dots into solid tumor, Biochem. Biophys. Res. Commun., 425, 769, 10.1016/j.bbrc.2012.07.150 Ganai, 2011, In tumors Salmonella migrate away from vasculature toward the transition zone and induce apoptosis, Cancer Gene Ther., 18, 457, 10.1038/cgt.2011.10 Loeffler, 2008, Inhibition of tumor growth using Salmonella expressing Fas ligand, J. Natl. Cancer Inst., 100, 1113, 10.1093/jnci/djn205 Yam, 2010, Monotherapy with a tumor-targeting mutant of S. typhimurium inhibits liver metastasis in a mouse model of pancreatic cancer, J. Surg. Res., 164, 248, 10.1016/j.jss.2009.02.023 Ciabattini, 2008, Primary activation of antigen-specific naive CD4(+) and CD8(+) T cells following intranasal vaccination with recombinant bacteria, Infect. Immun., 76, 5817, 10.1128/IAI.00793-08 Ciabattini, 2008, Intranasal immunization of mice with recombinant Streptococcus gordonii expressing NadA of Neisseria meningitidis induces systemic bactericidal antibodies and local IgA, Vaccine, 26, 4244, 10.1016/j.vaccine.2008.05.049 Izumo, 2010, Effect of intranasal administration of Lactobacillus pentosus S-PT84 on influenza virus infection in mice, Int. Immunopharmacol., 10, 1101, 10.1016/j.intimp.2010.06.012 Parker, 1947, Effect of histolyticus infection and toxin on transplantable mouse tumors, Proc. Soc. Exp. Biol. Med., 66, 461, 10.3181/00379727-66-16124 Thiele, 1964, Oncolysis by clostridia. III. Effects of clostridia, Cancer Res., 24, 222 Möse, 1964, Oncolysis by Clostridia. I. Activity of Clostridium butyricum (M-55) and other nonpathogenic clostridia against the Ehrlich carcinoma, Cancer Res., 24, 212 Clementz, 1997, Function of the Escherichia coli msbB gene, a multicopy suppressor of htrB knockouts, in the acylation of lipid A. Acylation by MsbB follows laurate incorporation by HtrB, J. Biol. Chem., 272, 10353, 10.1074/jbc.272.16.10353 Murray, 2001, Extragenic suppressors of growth defects in msbB Salmonella, J. Bacteriol., 183, 5554, 10.1128/JB.183.19.5554-5561.2001 Pawelek, 2003, Bacteria as tumour-targeting vectors, Lancet Oncol., 4, 548, 10.1016/S1470-2045(03)01194-X Fischbach, 2013, Cell-based therapeutics: the next pillar of medicine, Sci. Transl. Med., 5, 177, 10.1126/scitranslmed.3005568 Brandau, 2007, Thirty years of BCG immunotherapy for non-muscle invasive bladder cancer: a success story with room for improvement, Biomed. Pharmacother., 61, 299, 10.1016/j.biopha.2007.05.004 Chan, 2016, 'Deadman' and 'Passcode' microbial kill switches for bacterial containment, Nat. Chem. Biol., 12, 82, 10.1038/nchembio.1979 Galajda, 2007, A wall of funnels concentrates swimming bacteria, J. Bacteriol., 189, 8704, 10.1128/JB.01033-07 Howse, 2007, Self-motile colloidal particles: from directed propulsion to random walk, Phys. Rev. Lett., 99, 048102, 10.1103/PhysRevLett.99.048102 Park, 2003, Influence of topology on bacterial social interaction, Proc. Natl. Acad. Sci., 100, 13910, 10.1073/pnas.1935975100 Koumakis, 2013, Targeted delivery of colloids by swimming bacteria, Nat. Commun., 4, 10.1038/ncomms3588 Petrof, 2013, Microbial ecosystems therapeutics: a new paradigm in medicine?, Benefic. Microbes, 4, 53, 10.3920/BM2012.0039 Reardon, 2014, Microbiome therapy gains market traction, Nature, 509, 269, 10.1038/509269a Hood, 2004, Systems biology and new technologies enable predictive and preventative medicine, Science, 306, 640, 10.1126/science.1104635