Bioelectricity production of microbial fuel cells (MFCs) and the simultaneous monitoring using developed multi-channels Arduino UNO-based data logging system

Yohanna Anisa Indriyani1, Erus Rustami2, Iman Rusmana3, Syaiful Anwar4, Gunawan Djajakirana4, Dwi Andreas Santosa4
1Study Program of Soil Sciences, Faculty of Agriculture, IPB University, Bogor, Indonesia
2Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
3Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
4Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, Bogor, Indonesia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Potter MC, Waller AD (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc London 84(571):260–276. https://doi.org/10.1098/rspb.1911.0073

Deval AS, Parikh HA, Kadier A, Chandrasekhar K, Bhagwat AM, Dikshit AK (2017) Sequential microbial activities mediated bioelectricity production from distillery wastewater using bio-electrochemical system with simultaneous waste remediation. Int J Hydrogen Energy 42(2):1130–1141. https://doi.org/10.1016/j.ijhydene.2016.11.114

Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh S-E (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. AEJ 54(3):745–756. https://doi.org/10.1016/j.aej.2015.03.031

Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192. https://doi.org/10.1021/es0605016

Sharma Y, Li B (2010) The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresour Technol 101(6):1844–1850. https://doi.org/10.1016/j.biortech.2009.10.040

Rabaey K, Van de Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Pham HT, Vermeulen J, Verhaege M, Lens P, Verstraete W (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40(17):5218–5224. https://doi.org/10.1021/es060382u

Tardast A, Rahimnejad M, Najafpour G, Ghoreyshi A, Premier GC, Bakeri G, Oh S-E (2014) Use of artificial neural network for the prediction of bioelectricity production in a membrane less microbial fuel cell. Fuel 117:697–703. https://doi.org/10.1016/j.fuel.2013.09.047

Poggi-Varaldo HM, Borbolla-Gaxiola JE, Ponce-Noyola MT, Solorza-Feria O, Hernández-Flores G (2017) Evaluation of a low-cost device for monitoring potential and enrichment of microbial cultures used in a biocathode microbial fuel cell. In: Paper presented at the fourth international symposium on bioremediation and sustainable environmental technologies, Miami

Logan BE (2007) Microbial fuel cells. John Wiley and Sons, Hoboken

Sun M, Zhai L-F, Li W-W, Yu H-Q (2016) Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chem Soc Rev 45(10):2847–2870. https://doi.org/10.1039/C5CS00903K

Rafiquzzaman M (2018) Microcontroller theory and applications with the PIC18F. John Wiley and Sons, Hoboken

Kondaveeti HK, Kumaravelu NK, Vanambathina SD, Mathe SE, Vappangi S (2021) A systematic literature review on prototyping with Arduino: applications, challenges, advantages, and limitations. Comput Sci Rev 40:100364. https://doi.org/10.1016/j.cosrev.2021.100364

Arduino (2018) What is Arduino? https://www.arduino.cc/en/Guide/Introduction. Accessed 2 May 2023

Jo BW, Khan RMA (2017) An event reporting and early-warning safety system based on the internet of things for underground coal mines: a case study. A Case Study Appl Sci 7(9):925. https://doi.org/10.3390/app7090925

Chandramohan J, Nagarajan R, Satheeshkumar K, Ajithkumar N, Gopinath P, Ranjithkumar S (2017) Intelligent smart home automation and security system using Arduino and Wi-fi. Int J Eng Comput Sci 6(3):20694–20698

Adjiski V, Despodov Z, Serafimovski D, Mijalkovski S (2019) System for prediction of carboxyhemoglobin levels as an indicator for on-time installation of self-contained self-rescuers in case of fire in underground mines. GeoScience Eng 65(4):23–37

Kim S-M (2019) Review of internet of things and open-source hardware technologies use in the mining industry. J Korean Soc Miner Energy Resour Eng 56(5):447–456. https://doi.org/10.32390/ksmer.2019.56.5.447

Lobur M, Korpyljov D, Jaworski N, Iwaniec M, Marikutsa U (2020) Arduino based ambient air pollution sensing system. In: 2020 IEEE XVIth international conference on the perspective technologies and methods in MEMS design (MEMSTECH), 22–26 April 2020. pp 32–35. https://doi.org/10.1109/MEMSTECH49584.2020.9109460

Mitchell J, Marshall JA (2020) Towards a novel auto-rotating lidar platform for cavity surveying. Tunn Undergr Space Technol 97:103260. https://doi.org/10.1016/j.tust.2019.103260

Hong WJ, Shamsuddin N, Abas E, Apong RA, Masri Z, Suhaimi H, Gödeke SH, Noh MNA (2021) Water quality monitoring with Arduino based sensors. Environments 8(1):6. https://doi.org/10.3390/environments8010006

Karnadi J, Roihan I, Ekadiyanto A, Koestoer RA (2021) Development of a low-cost Arduino-based patient monitoring system for heartrate, oxygen saturation and body temperature parameters. J Appl Sci Eng Technol 1(1):26–26. https://doi.org/10.47355/aset.v1i1.15

Mancílio LBK, Ribeiro GA, Lopes EM, Kishi LT, Martins-Santana L, de Siqueira GMV, Andrade AR, Guazzaroni M-E, Reginatto V (2020) Unusual microbial community and impact of iron and sulfate on microbial fuel cell ecology and performance. CRBIOT 2:64–73. https://doi.org/10.1016/j.crbiot.2020.04.001

Salgado-Dávalos V, Osorio-Avilés S, Kamaraj SK, Vega-Alvarado L, Juárez K, Silva-Martínez S, Alvarez-Gallegos A (2021) Sediment microbial fuel cell power boosted by natural chitin degradation and oxygen reduction electrocatalysts. CLEAN Soil Air Water 49(3):2000465. https://doi.org/10.1002/clen.202000465

Indriyani YA (2017) Exploration, selection, and identification of electricigens bacteria isolated from ecosystems in indonesia for microbial fuel cell (MFC). IPB University, Bogor

Indriyani YA, Rusmana I, Anwar S, Djajakirana G, Santosa DA (2023) Harvesting bioelectricity from microbial fuel cells (MFCs) powered by electroactive microbes. J Lampung Agric Eng (Journal Teknik Pertanian Lampung) 12(3):583–596. http://dx.doi.org/10.23960/jtep-l.v12i3.583-596

Chae KJ, Choi M, Ajayi FF, Park W, Chang IS, Kim IS (2008) Mass transport through a proton exchange membrane (nafion) in microbial fuel cells. Energy Fuels 22(1):169–176. https://doi.org/10.1021/ef700308u

Erensoy A, Mulayim S, Orhan A, Çek N, Tuna A, Ak N (2022) The system design of the peat-based microbial fuel cell as a new renewable energy source: the potential and limitations. AEJ 61(11):8743–8750. https://doi.org/10.1016/j.aej.2022.02.020

An J, Lee H-S (2014) Occurrence and implications of voltage reversal in stacked microbial fuel cells. Chemsuschem 7(6):1689–1695. https://doi.org/10.1002/cssc.201300949

Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298. https://doi.org/10.1016/j.tibtech.2005.04.008

Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39(2):658–662. https://doi.org/10.1021/es048927c

Chandrasekhar K, Mohan SV (2012) Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration. Bioresour Technol 110:517–525. https://doi.org/10.1016/j.biortech.2012.01.128

Chandrasekhar K, Mohan SV (2014) Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: function of electron flux to enhance acidogenic biohydrogen production. Int J Hydrogen Energy 39(22):11411–11422. https://doi.org/10.1016/j.ijhydene.2014.05.035

Chandrasekhar K, Mohan SV (2014) Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production. Bioresour Technol 165:372–382. https://doi.org/10.1016/j.biortech.2014.02.073

Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39(11):4433–4448. https://doi.org/10.1039/C003068F

Puig S, Serra M, Coma M, Cabré M, Balaguer MD, Colprim J (2010) Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresour Technol 101(24):9594–9599. https://doi.org/10.1016/j.biortech.2010.07.082

Luo J, Li M, Zhou M, Hu Y (2015) Characterization of a novel strain phylogenetically related to Kocuria rhizophila and its chemical modification to improve performance of microbial fuel cells. Biosens Bioelectron 69:113–120. https://doi.org/10.1016/j.bios.2015.02.025

Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEM Microbiol Lett 223(1):129–134. https://doi.org/10.1016/S0378-1097(03)00354-9

Zhao F, Slade RCT, Varcoe JR (2009) Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chem Soc Rev 38(7):1926–1939. https://doi.org/10.1039/B819866G

Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180(2):683–694. https://doi.org/10.1016/j.jpowsour.2008.02.074

Eliato TR, Pazuki G, Majidian N (2016) Potassium permanganate as an electron receiver in a microbial fuel cell. Energy Sour Part A Recover Utilization Environ Eff 38(5):644–651. https://doi.org/10.1080/15567036.2013.818079

Si Ishii, Suzuki S, Yamanaka Y, Wu A, Nealson KH, Bretschger O (2017) Population dynamics of electrogenic microbial communities in microbial fuel cells started with three different inoculum sources. Bioelectrochemistry 117:74–82. https://doi.org/10.1016/j.bioelechem.2017.06.003

González-Gamboa N, Domínguez-Benetton X, Pacheco-Catalán D, Kumar-Kamaraj S, Valdés-Lozano D, Domínguez-Maldonado J, Alzate-Gaviria L (2018) Effect of operating parameters on the performance evaluation of benthic microbial fuel cells using sediments from the bay of campeche. Mexico Sustain. https://doi.org/10.3390/su10072446

Karra U, Huang G, Umaz R, Tenaglier C, Wang L, Li B (2013) Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system. Bioresour Technol 144:477–484. https://doi.org/10.1016/j.biortech.2013.06.104

Wang RY, Li HX, Peng XQ, Zhang GY, Zhang LY (2019) New ecological dam for sediment and overlying water pollution treatment based on microbial fuel cell principle. Environ Sci Pollut R 26(18):18615–18623. https://doi.org/10.1007/s11356-019-05036-x

Dunaj SJ, Vallino JJ, Hines ME, Gay M, Kobyljanec C, Rooney-Varga JN (2012) Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells. Environ Sci Technol 46(3):1914–1922. https://doi.org/10.1021/es2032532

Lyautey E, Cournet A, Morin S, Boulêtreau S, Etcheverry L, Charcosset J-Y, Delmas F, Bergel A, Garabetian F (2011) Electroactivity of phototrophic river biofilms and constitutive cultivable bacteria. Appl Environ Microbiol 77(15):5394–5401. https://doi.org/10.1128/AEM.00500-11

Agostino V, Ahmed D, Sacco A, Margaria V, Armato C, Quaglio M (2017) Electrochemical analysis of microbial fuel cells based on enriched biofilm communities from freshwater sediment. Electrochim Acta 237:133–143. https://doi.org/10.1016/j.electacta.2017.03.186

Sajana TK, Ghangrekar MM, Mitra A (2014) Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell. Bioresour Technol 155:84–90. https://doi.org/10.1016/j.biortech.2013.12.094