Biodegradation of high concentrations of benzene vapors in a two phase partition stirred tank bioreactor

Ali Karimi1, Farideh Golbabaei2, Masoud Neghab1, Mohammad Reza Pourmand3, Ahmad Nikpey4, Kazem Mohammad5, Mohammad Reza Mehrnia6
1Department of Occupational Health, School of Public Health and Nutrition, Shiraz University of Medical Sciences, Shiraz, Iran
2Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
3Pathobiology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
4Department of Occupational Health, School of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran
5Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
6Biotechnology Group, School of Chemical Engineering, University College of Engineering, University of Tehran, Tehran, Iran

Tóm tắt

Abstract

The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil) has been emphasized, so at the first stage the removal efficiency (RE) and elimination capacity (EC) of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580 mg/m3, a condition at which, the elimination capacity and removal efficiency were 181 g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs) are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

Từ khóa


Tài liệu tham khảo

Garcia-Pena I, Ortiz I: Biofiltration of BTEX by the fungus Paecilomyces variotii. Int Biodeter Biodegr. 2008, 62 (4): 442-447. 10.1016/j.ibiod.2008.03.012.

Lee K, Jean J, Wang SM: Effects of inorganic nutrient levels on the biodegradation of benzene, toluene, and xylene (BTX) by Pseudomonas spp. in a laboratory porous media sand aquifer model. Bioresour Technol. 2008, 99 (16): 7807-7815. 10.1016/j.biortech.2008.01.064.

Littlejohns JV, Daugulis AJ: A two phase partitioning airlift bioreactor for the treatment of BTEX contaminated gases. Biotechnol Bioeng. 2009, 103 (6): 1077-1086. 10.1002/bit.22343.

Dehghanzadeh R, Aslani H: Interaction of acrylonitrile vapors on a bench scale biofilter treating styrene-polluted waste gas streams. Iran. J. Environ. Health. Sci. Eng. 2011, 8 (2): 159-168.

Choi SC, Oh YS: Simultaneous removal of benzene, toluene and xylenes mixture by a constructed microbial consortium during biofiltration. Biotechnol Lett. 2002, 24 (15): 1269-1275. 10.1023/A:1016273828254.

Nielsen DR, Sask KN: Benzene vapor treatment using a two-phase partitioning bioscrubber: an improved steady-state protocol to enhance long-term operation. Bioprocess Biosyst Eng. 2006, 29 (4): 229-240. 10.1007/s00449-006-0071-2.

Davidson CT, Daugulis AJ: Addressing biofilter limitations: A two-phase partitioning bioreactor process for the treatment of benzene and toluene contaminated gas streams. Biodegradation. 2003, 14 (6): 415-421. 10.1023/A:1027363526518.

Kan E, Deshusses MA: Development of foamed emulsion bioreactor for air pollution control. Biotechnol Bioeng. 2003, 84 (2): 240-244. 10.1002/bit.10767.

Zarook Shareefdeen ASE: Biotechnology for Odor and Air Pollution Control. 2005, Berlin Heidelberg New York: Springer

Ghorbani Shahna F, Golbabaei F: A bioactive foamed emulsion reactor for the treatment of benzene-contaminated air stream. Bioprocess Biosyst Eng. 2009, 33 (2): 219-226.

Yeom SH, Daugulis AJ: Benzene degradation in a two-phase partitioning bioreactor by Alcaligenes xylosoxidans Y234. Process Biochem. 2001, 36 (8): 765-772. 10.1016/S0032-9592(00)00277-6.

Deziel E, Comeau Y: Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation. 1999, 10 (3): 219-233. 10.1023/A:1008311430525.

Munoz R, Villaverde S: Two-phase partitioning bioreactors for treatment of volatile organic compounds. Biotechnol Adv. 2007, 25 (4): 410-422. 10.1016/j.biotechadv.2007.03.005.

Arriaga S, Munoz R: Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed-bed and stirred-tank bioreactors. Environ Sci Technol. 2006, 40 (7): 2390-2395. 10.1021/es051512m.

Munoz R, Arriaga S: Enhanced hexane biodegradation in a two phase partitioning bioreactor: Overcoming pollutant transport limitations. Process Biochem. 2006, 41 (7): 1614-1619. 10.1016/j.procbio.2006.03.007.

Karimi A, Golbabaei F: Investigation of oxygen transfer in a Two-phase partition stirred tank bioreactor in the presence of silicone oil. Iran. J. Environ. Health. Sci. Eng. in press

Rene ER, Estefana Lpez M: Neural network models for biological waste-gas treatment systems. New Biotechnology. 2011, 29 (1): 56-73. 10.1016/j.nbt.2011.07.001.

Yeom SH, Daugulis AJ: Benzene degradation in a two-phase partitioning bioreactor by Alcaligenes xylosoxidans Y234. Process Biochem. 2001, 36: 765-772. 10.1016/S0032-9592(00)00277-6.

Ascon-Cabrera MA, Lebeault JM: Cell hydrophobicity influencing the activity/stability of xenobiotic-degrading microorganisms in a continuous biphasic aqueous-organic system. J Ferment Bioeng. 1995, 80: 270-275. 10.1016/0922-338X(95)90828-N.

Muoz R, Guieysse B: Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol. 2003, 61 (3): 261-267.

Heock-Hoi K, Cho KS: Benzene biodegradation using the polyurethane biofilter immobilized with Stenotrophomonas maltophilia T3-c. Korean Society for Applied Microbiology. 2003, 13: 70-76.

Li GW, Hu HY: Use of biological activated carbon to treat mixed gas of toluene and benzene in biofilter. Environ Technol. 2002, 23 (4): 467-477. 10.1080/09593332508618407.

Zhou Q, Huang YL: A trickling fibrous bed bioreactor for biofiltration of benzene in air. J Chem Technol Biotechnol. 1998, 73: 359-368. 10.1002/(SICI)1097-4660(199812)73:4<359::AID-JCTB970>3.0.CO;2-V.

Oliveira FJS, Frania FP: Performance of an internal-loop airlift bioreactor for treatment of hexane-contaminated air. Twenty Sixth Symposium on Biotechnology for Fuels and Chemicals ABAB Symposium. 2005, 121-124 (1-3): 581-591.