Biodegradable, superhydrophobic walnut wood membrane for the separation of oil/water mixtures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wen L, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications. Angewandte Chemie International Edition, 2015, 54(11): 3387–3399
Wang S, Liu K, Yao X, Jiang L. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chemical Reviews, 2015, 115(16): 8230–8293
Liu M, Wang S, Jiang L. Nature-inspired superwettability systems. Nature Reviews Materials, 2017, 2(7): 1–17
Yin X, Wang Z, Shen Y, Mu P, Zhu G, Li J. Facile fabrication of superhydrophobic copper hydroxide coated mesh for effective separation of water-in-oil emulsions. Separation and Purification Technology, 2020, 230: 115856
Xu W, Song J, Sun J, Lu Y, Yu Z. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. ACS Applied Materials & Interfaces, 2011, 3(11): 4404–4414
Varanasi K K, Deng T, Smith J D, Hsu M, Bhate N. Frost formation and ice adhesion on superhydrophobic surfaces. Applied Physics Letters, 2010, 97(23): 234102
Zhang C, Liang F, Zhang W, Liu H, Ge M, Zhang Y, Dai J, Wang H, Xing G, Lai Y, Tang Y. Constructing mechanochemical durable and self-healing superhydrophobic surfaces. ACS Omega, 2020, 5(2): 986–994
Zhang J, Seeger S. Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Advanced Functional Materials, 2011, 21(24): 4699–4704
Ge M, Cao C, Huang J, Zhang X, Tang Y, Zhou X, Zhang K, Chen Z, Lai Y. Rational design of materials interface at nanoscale towards intelligent oil-water separation. Nanoscale Horizons, 2018, 3(3): 235–260
Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie, 2004, 116(15): 2046–2048
Li L, Xu Z, Sun W, Chen J, Dai C, Yan B, Zeng H. Bio-inspired membrane with adaptable wettability for smart oil/water separation. Journal of Membrane Science, 2020, 598: 117661
Lu K J, Zhao D, Chen Y, Chang J, Chung T S. Rheologically controlled design of nature-inspired superhydrophobic and self-cleaning membranes for clean water production. npj Clean Water, 2020, 3(1): 1–10
Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Advanced Materials, 2013, 25(14): 2071–2076
Wang D, Sun Q, Hokkanen M J, Zhang C, Lin F Y, Liu Q, Zhu S P, Zhou T, Chang Q, He B, Zhou Q, Chen L, Wang Z, Ras R H A, Deng X. Design of robust superhydrophobic surfaces. Nature, 2020, 582(7810): 55–59
Peng Y, Zhu W, Shen S, Feng L, Deng Y. Strain-induced surface micro/nanosphere structure: a new technique to design mechanically robust superhydrophobic surfaces with rose petallike morphology. Advanced Materials Interfaces, 2017, 4(20): 1700497
Tian X, Verho T, Ras R H A. Moving superhydrophobic surfaces toward real-world applications. Science, 2016, 352(6282): 142–143
Hussain S M, Braydich-Stolle L K, Schrand A M, Murdock R C, Yu K O, Mattie D M, Schlager J J, Terrones M. Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Advanced Materials, 2009, 21(16): 1549–1559
Berglund L A, Burgert I. Bioinspired wood nanotechnology for functional materials. Advanced Materials, 2018, 30(19): 1704285
Jiang F, Li T, Li Y, Zhang Y, Gong A, Dai J, Hitz E, Luo W, Hu L. Wood-based nanotechnologies toward sustainability. Advanced Materials, 2018, 30(1): 1703453
Chen F, Gong A S, Zhu M, Chen G, Lacey S D, Jiang F, Li Y, Wang Y, Dai J, Yao Y, Song J, Liu B, Fu K, Das S, Hu L. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano, 2017, 11(4): 4275–4282
Vidiella del Blanco M, Fischer E J, Cabane E. Underwater superoleophobic wood cross sections for efficient oil/water separation. Advanced Materials Interfaces, 2017, 4(21): 1700584
Wang K, Liu X, Tan Y, Zhang W, Zhang S, Li J. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chemical Engineering Journal, 2019, 371: 769–780
Fu Q, Ansari F, Zhou Q, Berglund L A. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano, 2018, 12(3): 2222–2230
Mulyadi A, Zhang Z, Deng Y. Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Applied Materials & Interfaces, 2016, 8(4): 2732–2740
Bai X, Shen Y, Tian H, Yang Y, Feng H, Li J. Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation. Separation and Purification Technology, 2019, 210: 402–408
Wang X, Liu S, Chang H, Liu J. Sol-gel deposition of TiO2 nanocoatings on wood surfaces with enhanced hydrophobicity and photostability. Wood and Fiber Science, 2014, 46(1): 109–117
Liu M, Qing Y, Wu Y, Liang J, Luo S. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process. Applied Surface Science, 2015, 330: 332–338
Chang H, Tu K, Wang X, Liu J. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Advances, 2015, 5(39): 30647–30653
Wu Y, Jia S, Qing Y, Luo S, Liu M. A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates. Journal of Materials Chemistry A, 2016, 4(37): 14111–14121
Hsieh C T, Chang B S, Lin J Y. Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating. Applied Surface Science, 2011, 257(18): 7997–8002
Xie L, Tang Z, Jiang L, Breedveld V, Hess D W. Creation of superhydrophobic wood surfaces by plasma etching and thin-film deposition. Surface and Coatings Technology, 2015, 281: 125–132
Unger B, Bücker M, Reinsch S, Hübert T. Chemical aspects of wood modification by sol-gel-derived silica. Wood Science and Technology, 2013, 47(1): 83–104
Wang X, Chai Y, Liu J. Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane. Holzforschung, 2013, 67(6): 667–672
Ma P, Chen B, Di M. Activation processes of wood fiber under freezing by NaOH/urea aqueous solution. Biomass Chemical Engineering, 2018, 52: 16–22
Yong J, Chen F, Huo J, Fang Y, Yang Q, Bian H, Li W, Wei Y, Dai Y, Hou X. Green, Biodegradable, underwater superoleophobic wood sheet for efficient oil/water separation. ACS Omega, 2018, 3(2): 1395–1402
Chen Y, Lin X, Liu N, Cao Y, Lu F, Xu L, Feng L. Magnetically recoverable efficient demulsifier for water-in-oil emulsions. ChemPhysChem, 2015, 16(3): 595–600
Mi R, Li T, Dalgo D, Chen C, Kuang Y, He S, Zhao X, Xie W, Gan W, Zhu J, Srebric J, Yang R, Hu L. A clear, strong, and thermally insulated transparent wood for energy efficient windows. Advanced Functional Materials, 2020, 30(1): 1907511
Tu K, Wang X, Kong L, Chang H, Liu J. Fabrication of robust, damage-tolerant superhydrophobic coatings on naturally micro-grooved wood surfaces. RSC Advances, 2016, 6(1): 701–707
Liu F, Wang S, Zhang M, Ma M, Wang C, Li J. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer. Applied Surface Science, 2013, 280: 686–692
Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Super-hydrophobic surfaces: from natural to artificial. Advanced Materials, 2002, 14(24): 1857–1860
Faix O, Böttcher J H. The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood. European Journal of Wood & Wood Products, 1992, 50(6): 221–226
Popescu C M, Popescu M C, Vasile C. Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy. International Journal of Biological Macromolecules, 2011, 48(4): 667–675
Labbé N, Rials T G, Kelley S S, Cheng Z M, Kim J Y, Li Y. FT-IR imaging and pyrolysis-molecular beam mass spectrometry: new tools to investigate wood tissues. Wood Science and Technology, 2005, 39(1): 61–76
Gao S, Dong X, Huang J, Li S, Li Y, Chen Z, Lai Y. Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil–water separation. Chemical Engineering Journal, 2018, 333: 621–629
Hong J K, Kim H R, Park H H. The effect of sol viscosity on the sol-gel derived low density SiO2 xerogel film for intermetal dielectric application. Thin Solid Films, 1998, 332(1): 449–454
Liu C, Wang S, Shi J, Wang C. Fabrication of superhydrophobic wood surfaces via a solution-immersion process. Applied Surface Science, 2011, 258(2): 761–765
Arkles B, Larson G L. Silicon Compounds: Silanes & Silicones. 3rd edition. Morrisville, PA: Gelest, Inc., 2013
Zhu T, Cheng Y, Huang J, Xiong J, Ge M, Mao J, Liu Z, Dong X, Chen Z, Lai Y. A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning. Chemical Engineering Journal, 2020, 399: 125746