Biodegradable Stents: Biomechanical Modeling Challenges and Opportunities
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agrawal, C. M., and H. G. Clark. Deformation characteristics of a bioabsorbable intravascular stent. Invest. Radiol. 27:1020–1024, 1992.
Agrawal, C. M., K. F. Haas, D. A. Leopold, et al. Evaluation of poly(l-lactic acid) as a material for intravascular polymeric stents. Biomaterials 13:176–182, 1992.
Agrawal, C. M., and R. B. Ray. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55:141–150, 2001.
Ali, S. A., P. J. Doherty, and D. F. Williams. Mechanisms of polymer degradation in implantable devices. 2. Poly(Dl-lactic acid). J. Biomed. Mater. Res. 27:1409–1418, 1993.
Ali, S. A., S. P. Zhong, P. J. Doherty, et al. Mechanisms of polymer degradation in implantable devices. 1. Poly(caprolactone). Biomaterials 14:648–656, 1993.
Arshady, R. Biodegradable Polymers. London: Citus Books, 2003.
Bedoya, J., C. A. Meyer, L. H. Timmins, et al. Effects of stent design parameters on normal artery wall mechanics. J. Biomech. Eng. 128:757–765, 2006.
Bier, J. D., P. Zalesky, S. T. Li, et al. A new bioabsorbable intravascular stent: in vitro assessment of hemodynamic and morphometric characteristics. J. Interv. Cardiol. 5:187–194, 1992.
Bosiers, M., P. Peeters, O. D’Archambeau, et al. Ams insight—absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis. Cardiovasc. Intervent. Radiol. 32:424–435, 2009.
Bunger, C. M., N. Grabow, K. Sternberg, et al. A biodegradable stent based on poly(l-lactide) and poly(4-hydroxybutyrate) for peripheral vascular application: preliminary experience in the pig. J. Endovasc. Ther. 14:725–733, 2007.
Bunger, C. M., N. Grabow, K. Sternberg, et al. Sirolimus-eluting biodegradable poly-l-lactide stent for peripheral vascular application: a preliminary study in porcine carotid arteries. J. Surg. Res. 139:77–82, 2007.
Burkersroda, Fv., L. Schedl, and A. Gopferich. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:4221–4231, 2002.
Chu, C. C. Strain-Accelerated Hydrolytic Degradation of Synthetic Absorbable Sutures, edited by C. W. Hall. San Antonio, 1985, pp. 111–115.
Colombo, A., and E. Karvouni. Biodegradable stents: “fulfilling the mission and stepping away”. Circulation 102:371–373, 2000.
Drynda, A., N. Deinet, N. Braun, et al. Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes. J. Biomed. Mater. Res. A 91:360–369, 2009.
Erbel, R., C. Di Mario, J. Bartunek, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369:1869–1875, 2007.
Farb, A., D. K. Weber, F. D. Kolodgie, et al. Morphological predictors of restenosis after coronary stenting in humans. Circulation 105:2974–2980, 2002.
Folkman, J., and D. M. Long. The use of silicone rubber as a carrier for prolonged drug therapy. J. Surg. Res. 4:139–142, 1964.
Gopferich, A. Polymer degradation and erosion: mechanisms and applications. Eur. J. Pharm. Biopharm. 4:1–11, 1996.
Gopferich, A. Bioerodible implants with programmable drug release. J. Control. Release 44:271–281, 1997.
Gopferich, A. Mechanisms of polymer degradation and elimination. In: Handbook of Biodegradable Polymers, edited by A. J. Domb, et al. Australia: Harwood Academic Publishers, 1997, pp. 451–471.
Grabow, N., C. M. Bunger, C. Schultze, et al. A biodegradable slotted tube stent based on poly(l-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion. Ann. Biomed. Eng. 35:2031–2038, 2007.
Grabow, N., H. Martin, and K. P. Schmitz. The impact of material characteristics on the mechanical properties of a poly(l-lactide) coronary stent. Biomed. Tech. (Berl) 47(Suppl 1 Pt 1):503–505, 2002.
Grabow, N., M. Schlun, K. Sternberg, et al. Mechanical properties of laser cut poly(l-lactide) micro-specimens: implications for stent design, manufacture, and sterilization. J. Biomech. Eng. 127:25–31, 2005.
Grassi, M., and G. Grassi. Mathematical modelling and controlled drug delivery: matrix systems. Curr. Drug Deliv. 2:97–116, 2005.
Heublein, B., R. Rohde, V. Kaese, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89:651–656, 2003.
Hietala, E. M., U. S. Salminen, A. Stahls, et al. Biodegradation of the copolymeric polylactide stent. Long-term follow-up in a rabbit aorta model. J. Vasc. Res. 38:361–369, 2001.
Hyon, S. H., K. Jamshidi, and Y. Ikada. Effects of residual monomer on the degradation of Dl-lactide polymer. Polym. Int. 46:196–202, 1998.
Kastrati, A., D. Hall, and A. Schomig. Long-term outcome after coronary stenting. Curr. Contr. Trials C 1:48–54, 2000.
Katti, D. S., S. Lakshmi, R. Langer, et al. Toxicity, biodegradation and elimination of polyanhydrides. Adv. Drug Deliv. Rev. 54:933–961, 2002.
Kimura, T., H. Yokoi, Y. Nakagawa, et al. Three-year follow-up after implantation of metallic coronary-artery stents. N. Engl. J. Med. 334:561–566, 1996.
Kolachalama, V. B., A. R. Tzafriri, D. Y. Arifin, et al. Luminal flow patterns dictate arterial drug deposition in stent-based delivery. J. Control. Release 133:24–30, 2009.
Labinaz, M., J. P. Zidar, R. S. Stack, et al. Biodegradable stents: the future of interventional cardiology? J. Interv. Cardiol. 8:395–405, 1995.
Langer, R. Drug delivery and targeting. Nature 392:5–10, 1998.
Laufman, H., and T. Rubel. Synthetic absorable sutures. Surg. Gynecol. Obstet. 145:597–608, 1977.
Li, S. M., and S. McCarthy. Further investigations on the hydrolytic degradation of poly(Dl-lactide). Biomaterials 20:35–44, 1999.
Li, S. M., and M. Vert. Morphological-changes resulting from the hydrolytic degradation of stereocopolymers derived from L-lactides and Dl-lactides. Macromolecules 27:3107–3110, 1994.
Maeng, M., L. O. Jensen, E. Falk, et al. Negative vascular remodelling after implantation of bioabsorbable magnesium alloy stents in porcine coronary arteries: a randomised comparison with bare-metal and sirolimus-eluting stents. Heart 95:241–246, 2009.
Mikkonen, J., I. Uurto, T. Isotalo, et al. Drug-eluting bioabsorbable stents—an in vitro study. Acta Biomater. 5:2894–2900, 2009.
Miller, R. A., J. M. Brady, and D. E. Cutright. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in Pla/Pga copolymer ratios. J. Biomed. Mater. Res. 11:711–719, 1977.
Miller, N. D., and D. F. Williams. The in vivo and in vitro degradation of poly(glycolic acid) suture material as a function of applied strain. Biomaterials 5:365–368, 1984.
Nuutinen, J. P., C. Clerc, R. Reinikainen, et al. Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents. J. Biomater. Sci. Polym. Ed. 14:255–266, 2003.
Nuutinen, J. P., C. Clerc, and P. Tormala. Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents. J. Biomater. Sci. Polym. Ed. 14:677–687, 2003.
Ormiston, J. A., P. W. Serruys, E. Regar, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (absorb): a prospective open-label trial. Lancet 371:899–907, 2008.
Ormiston, J. A., M. W. Webster, and G. Armstrong. First-in-human implantation of a fully bioabsorbable drug-eluting stent: the Bvs poly-l-lactic acid everolimus-eluting coronary stent. Catheter. Cardiovasc. Interv. 69:128–131, 2007.
Peuster, M., C. Hesse, T. Schloo, et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962, 2006.
Peuster, M., P. Wohlsein, M. Brugmann, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569, 2001.
Pietrzak, W. S., M. L. Verstynen, and D. R. Sarver. Bioabsorbable fixation devices: status for the craniomaxillofacial surgeon. J. Craniofac. Surg. 8:92–96, 1997.
Piskin, E., A. Tuncel, A. Denizli, et al. Nondegradable and biodegradable polymeric particles—preparation and some selected biomedical applications. In: Diagnostic Biosensor Polymers, edited by A. M. Usmani, et al. Washington: American Chemical Society, 1994, pp. 222–237.
Pistner, H., D. R. Bendix, J. Muhling, et al. Poly(l-lactide)—a long-term degradation study in vivo. 3. Analytical characterization. Biomaterials 14:291–298, 1993.
Rajasubramanian, G., R. S. Meidell, C. Landau, et al. Fabrication of resorbable microporous intravascular stents for gene therapy applications. ASAIO J. 40:M584–M589, 1994.
Ramcharitar, S., and P. W. Serruys. Fully biodegradable coronary stents: progress to date. Am. J. Cardiovasc. Drugs 8:305–314, 2008.
Serruys, P. W., J. A. Ormiston, Y. Onuma, et al. A bioabsorbable everolimus-eluting coronary stent system (absorb): 2-year outcomes and results from multiple imaging methods. Lancet 373:897–910, 2009.
Soares, J. S. Constitutive modeling of biodegradable polymers for application in endovascular stents. PhD Dissertation. College Station, TX: Texas A&M University, 2008.
Soares, J. S. Diffusion of a fluid through a spherical elastic solid undergoing large deformations. Int. J. Eng. Sci. 47:50–63, 2009.
Soares, J. S., J. E. Moore, Jr., and K. R. Rajagopal. Theoretical modeling of cyclically loaded biodegradable cylinders. In: Modeling Biological Materials, edited by F. Mollica, et al. Boston: Birkhauser, 2007, pp. 125–177.
Soares, J. S., J. E. Moore, and K. R. Rajagopal. Constitutive framework for biodegradable polymers with applications to biodegradable stents. ASAIO J. 54:295–301, 2008.
Soares, J. S., J. E. Moore, and K. R. Rajagopal. Modeling of deformation-accelerated breakdown of polylactic acid biodegradable stents (submitted).
Soares, J. S., K. R. Rajagopal, and J. E. Moore. Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus. Biomech. Model. Mechanobiol. (in press).
Soares, J. S., and P. Zunino. A mixture model for water uptake, degradation, erosion, and drug release from polydisperse polymeric networks. Biomaterials 31:3032–3042, 2010.
Stack, R. S., R. M. Califf, H. R. Phillips, et al. Interventional cardiac catheterization at duke medical center. Am. J. Cardiol. 62:3F–24F, 1988.
Stone, G. W., S. G. Ellis, D. A. Cox, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 350:221–231, 2004.
Su, S. H., R. Y. Chao, C. L. Landau, et al. Expandable bioresorbable endovascular stent. I. Fabrication and properties. Ann. Biomed. Eng. 31:667–677, 2003.
Suggs, L. J., R. S. Krishnan, C. A. Garcia, et al. In vitro and in vivo degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomed. Mater. Res. 42:312–320, 1998.
Tamada, J. A., and R. Langer. Erosion kinetics of hydrolytically degradable polymers. Proc. Natl. Acad. Sci. USA 90:552–556, 1993.
Tamai, H., K. Igaki, E. Kyo, et al. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404, 2000.
Tamai, H., K. Igaki, T. Tsuji, et al. A biodegradable poly-l-lactic acid coronary stent in the porcine coronary artery. J. Interv. Cardiol. 12:443–449, 1999.
Tanguay, J. F., J. P. Zidar, H. R. Phillips, 3rd, et al. Current status of biodegradable stents. Cardiol. Clin. 12:699–713, 1994.
Tsuji, T., H. Tamai, K. Igaki, et al. Biodegradable stents as a platform to drug loading. Int. J. Cardiovasc. Intervent. 5:13–16, 2003.
Uurto, I., A. Kotsar, T. Isotalo, et al. Tissue biocompatibility of new biodegradable drug-eluting stent materials. J. Mater. Sci. Mater. Med. 18:1543–1547, 2007.
Waksman, R., R. Erbel, C. Di Mario, et al. Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC Cardiovasc. Interv. 2:312–320, 2009.
Weir, N. A., F. J. Buchanan, J. F. Orr, et al. Degradation of poly-l-lactide: part 1: in vitro and in vivo physiological temperature degradation. P. I. Mech. Eng. H 218:307–319, 2004.
Weir, N. A., F. J. Buchanan, J. F. Orr, et al. Degradation of poly-l-lactide: part 2: increased temperature accelerated degradation. P. I. Mech. Eng. H 218:321–330, 2004.
Welch, T., R. C. Eberhart, and C. J. Chuong. Characterizing the expansive deformation of a bioresorbable polymer fiber stent. Ann. Biomed. Eng. 36:742–751, 2008.
Wiggins, M. J., J. M. Anderson, and A. Hiltner. Effect of strain and strain rate on fatigue-accelerated biodegradation of polyurethane. J. Biomed. Mater. Res. A 66A:463–475, 2003.
Wiggins, M. J., J. M. Anderson, and A. Hiltner. Biodegradation of polyurethane under fatigue loading. J. Biomed. Mater. Res. A 65A:524–535, 2003.
Wiggins, M. J., M. MacEwan, J. M. Anderson, et al. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading. J. Biomed. Mater. Res. A 68A:668–683, 2004.
Wu, X. S., and N. Wang. Characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation. J. Biomater. Sci. Polym. Ed. 12:21–34, 2001.
Ye, Y. W., C. Landau, J. E. Willard, et al. Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall. Ann. Biomed. Eng. 26:398–408, 1998.
Zhang, Y., S. Zale, L. Sawyer, et al. Effects of metal salts on poly(Dl-lactide-co-glycolide) polymer hydrolysis. J. Biomed. Mater. Res. 34:531–538, 1997.
Zhong, S. P., P. J. Doherty, and D. F. Williams. The effect of applied strain on the degradation of absorbable suture in vitro. Clin. Mater. 14:183–189, 1993.
Zilberman, M., K. D. Nelson, and R. C. Eberhart. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. J. Biomed. Mater. Res. B 74:792–799, 2005.