Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Polyme Không Thải Biodegradable Bọc Hạt Nano Nickel Để Giải Phóng Chậm Urea Thúc Đẩy Năng Suất Cỏ Rhode Và Khôi Phục Nitơ
Tóm tắt
Có một nhu cầu cấp thiết cho việc phát triển các công thức phân bón nitơ (N) bền vững và có hiệu quả sử dụng cao để đảm bảo an ninh lương thực và giảm thiểu biến đổi khí hậu. Gần đây, công nghệ nano đã cho thấy tiềm năng đóng góp vào sản xuất hóa chất nông nghiệp bền vững thông qua việc bọc các vật liệu nano hữu cơ và vô cơ. Trong nghiên cứu này, chúng tôi đã khám phá việc sử dụng các hạt nano encapsulated nickel với các lớp bọc phân hủy sinh học khác nhau như: tinh bột, polyvinyl alcohol (PVA), gum arabica, gelatin, mật mía và sáp paraffin (PW) để cải thiện các tính chất vật lý của phân bón N thông thường trong hệ thống cây trồng đất. Các kết quả cho thấy việc bọc hạt ure bằng các hạt nano encapsulated nickel đã làm tăng đáng kể tính khả dụng của N và do đó năng suất chất khô của cỏ Rhode. Các vật liệu bọc làm giảm độ hòa tan và tăng cường khả năng chịu lực của các hạt. Phương pháp điều trị UC-5 chứa tinh bột, PVA, mật mía, PW và Ni-NPs cho kết quả tốt nhất về tỷ lệ giải phóng (77,96% lượng ure được giải phóng sau 120 phút so với 100% lượng ure được giải phóng cho hạt không bọc), độ cứng nén (70 ± 0,27 N) và năng suất chất khô của cỏ Rhode (58,55 g/pot). Các kết quả cho thấy rằng phương pháp điều trị UC-5 cải thiện đáng kể nitơ khoáng trong đất so với các hạt không bọc và ure chỉ bọc bằng NiO-NPs. Do đó, công thức này sẽ được xem xét để cải thiện khả năng hấp thụ N của cây trồng dưới nông nghiệp bền vững và sạch.
Từ khóa
#Phân bón nitơ #công nghệ nano #vật liệu bọc sinh học #cỏ Rhode #năng suất cây trồng #nông nghiệp bền vữngTài liệu tham khảo
Wang Y, Lu Y (2020) Evaluating the potential health and economic effects of nitrogen fertilizer application in grain production systems of China. J Clean Prod 264:121635. https://doi.org/10.1016/j.jclepro.2020.121635
Wang Y et al (2019) Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci Total Environ 657:96–102. https://doi.org/10.1016/j.scitotenv.2018.12.029
Prathap S et al (2022) Role of zinc solubilizing bacteria in enhancing growth and nutrient accumulation in rice plants (Oryza sativa) grown on zinc (Zn) deficient submerged soil. Soil Sci Plant Nutr 22(1):971–984. https://doi.org/10.1007/s42729-021-00706-7
Marion GS et al (2021) Linking isotopic signatures of nitrogen in nearshore coral skeletons with sources in catchment runoff. Mar Pollut Bull 173:113054. https://doi.org/10.1016/j.marpolbul.2021.113054
Salim N, Raza A (2020) Nutrient use efficiency (NUE) for sustainable wheat production: a review. J Plant Nutr 43(2):297–315. https://doi.org/10.1080/01904167.2019.1676907
Smith W et al (2020) Towards an improved methodology for modelling climate change impacts on cropping systems in cool climates. Sci Total Environ 728:138845. https://doi.org/10.1016/j.scitotenv.2020.138845
Liu J et al (2019) Bio-based elastic polyurethane for controlled-release urea fertilizer: fabrication, properties, swelling and nitrogen release characteristics. J Clean Prod 209:528–537. https://doi.org/10.1016/j.jclepro.2018.10.263
Wang X et al (2019) The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv Agron 153:121–173. https://doi.org/10.1016/bs.agron.2018.08.003
Beig B et al (2020) Biodegradable polymer coated granular urea slows down N release kinetics and improves spinach productivity. Polymers 12(11):2623. https://doi.org/10.3390/polym12112623
Beig B et al (2020) Slow-release urea prills developed using organic and inorganic blends in fluidized bed coater and their effect on spinach productivity. Sustainability 12(15):5944. https://doi.org/10.3390/su12155944
Lum YH et al (2013) Characterization of urea encapsulated by biodegradable starch-PVA-glycerol. J Polym Environ 21(4):1083–1087
Zafar N et al (2021) Starch and polyvinyl alcohol encapsulated biodegradable nanocomposites for environment friendly slow release of urea fertilizer. Adv Chem Eng 7:100123. https://doi.org/10.1016/j.ceja.2021.100123
Khan O et al (2021) Green synthesis and evaluation of calcium-based nanocomposites fertilizers: a way forward to sustainable agricultural. J Saudi Soc Agric Sci 20(8):519–529. https://doi.org/10.1016/j.jssas.2021.06.005
Svane S et al (2020) Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci Rep 10(1):1–14. https://doi.org/10.1038/s41598-020-65107-9
Sigurdarson JJ, Svane S, Karring H (2018) The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev Environ Sci Biotechnol 17(2):241–258. https://doi.org/10.1007/s11157-018-9466-1
Modolo LV et al (2018) A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s. J Adv Res 13:29–37. https://doi.org/10.1016/j.jare.2018.04.001
North JA et al (2020) A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis. Science 369(6507):1094–1098. https://doi.org/10.1126/science.abb6310
Bosse MA et al (2021) Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants. Plant Physiol Biochem 166:512–521. https://doi.org/10.1016/j.plaphy.2021.06.007
Birrell JA et al (2021) The catalytic cycle of [FeFe] hydrogenase: a tale of two sites. Coord Chem Rev 449:214191. https://doi.org/10.1016/j.ccr.2021.214191
Hassan MU et al (2019) Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ Sci Pollut Res 26(13):12673–12688. https://doi.org/10.1007/s11356-019-04892-x
McCain JSP et al (2021) Cellular costs underpin micronutrient limitation in phytoplankton. Sci Adv 7(32):eabg6501. https://doi.org/10.1126/sciadv.abg6501
Moreno-Jiménez E et al (2022) Aridity and geochemical drivers of soil micronutrient and contaminant availability in European drylands. Eur J Soil Sci 73(1):e13163. https://doi.org/10.1111/ejss.13163
Mikula K et al (2020) Controlled release micronutrient fertilizers for precision agriculture—a review. Sci Total Environ 712:136365. https://doi.org/10.1016/j.scitotenv.2019.136365
Siqueira Freitas D et al (2018) Hidden nickel deficiency? Nickel fertilization via soil improves nitrogen metabolism and grain yield in soybean genotypes. Front Plant Sci 9:614. https://doi.org/10.3389/fpls.2018.00614
Shahzad B et al (2018) Nickel; whether toxic or essential for plants and environment—a review. Plant Physiol Biochem 132:641–651. https://doi.org/10.1016/j.plaphy.2018.10.014
Genchi G et al (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17(3):679. https://doi.org/10.3390/ijerph17030679
Menon A, Wang J-Y, Giannis A (2017) Optimization of micronutrient supplement for enhancing biogas production from food waste in two-phase thermophilic anaerobic digestion. Waste Manage 59:465–475. https://doi.org/10.1016/j.wasman.2016.10.017
Usman M et al (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 721:137778. https://doi.org/10.1016/j.scitotenv.2020.137778
Beig B et al (2022) Nanotechnology-based controlled release of sustainable fertilizers. A review. Environ Chem Lett. https://doi.org/10.1007/s10311-022-01409-w
Majumdar S, Keller AA (2021) Omics to address the opportunities and challenges of nanotechnology in agriculture. Crit Rev Environ Sci Technol 51(22):2595–2636. https://doi.org/10.1080/10643389.2020.1785264
Tarafder C et al (2020) Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. ACS Omega 5(37):23960–23966
Sobati-Nasab Z, Alirezalu A, Noruzi P (2021) Effect of foliar application of nickel on physiological and phytochemical characteristics of pot marigold (Calendula officinalis). J Agric Res 3:100108
Dimkpa CO et al (2022) Synthesis and characterization of novel dual-capped Zn–urea nanofertilizers and application in nutrient delivery in wheat. Environ Sci Adv 1(1):47–58
Tientong J et al (2014) Synthesis of nickel and nickel hydroxide nanopowders by simplified chemical reduction. J Nanotechnol. https://doi.org/10.1155/2014/193162
Quadri TW et al (2017) Zinc oxide nanocomposites of selected polymers: synthesis, characterization, and corrosion inhibition studies on mild steel in HCl solution. ACS Omega 2(11):8421–8437. https://doi.org/10.1021/acsomega.7b01385
Zhang M, Yang J (2021) Preparation and characterization of multifunctional slow release fertilizer coated with cellulose derivatives. Int J Polym Mater Polym Biomater 70(11):774–781. https://doi.org/10.1080/00914037.2020.1765352
Sadaf J et al (2017) Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers. Sci Total Environ 607:715–724. https://doi.org/10.1016/j.scitotenv.2017.06.178
Munir MAM et al (2020) Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil. Chemosphere 240:124845. https://doi.org/10.1016/j.chemosphere.2019.124845
Sahu S et al (2022) Bacterial strains found in the soils of a municipal solid waste dumping site facilitated phosphate solubilization along with cadmium remediation. Chemosphere 287:132320. https://doi.org/10.1016/j.chemosphere.2021.132320
Aziz Y, Shah GA, Rashid MI (2019) ZnO nanoparticles and zeolite influence soil nutrient availability but do not affect herbage nitrogen uptake from biogas slurry. Chemosphere 216:564–575. https://doi.org/10.1016/j.chemosphere.2018.10.119
González M et al (2015) Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci Total Environ 505:446–453. https://doi.org/10.1016/j.scitotenv.2014.10.014
Naz MY et al (2014) Characterization of modified tapioca starch solutions and their sprays for high temperature coating applications. Sci World J. https://doi.org/10.1155/2014/375206
Azeem B et al (2020) Production and characterization of controlled release urea using biopolymer and geopolymer as coating materials. Polymers 12(2):400. https://doi.org/10.3390/polym12020400
Bortoletto-Santos R et al (2020) Polyurethane nanocomposites can increase the release control in granulated fertilizers by controlling nutrient diffusion. Appl Clay Sci 199:105874. https://doi.org/10.1016/j.clay.2020.105874
Tian H et al (2017) Fabrication and properties of polyvinyl alcohol/starch blend films: effect of composition and humidity. Int J Biol Macromol 96:518–523. https://doi.org/10.1016/j.ijbiomac.2016.12.067
Aleksandrova E et al (2018) Structural and mechanical properties of paraffin wax composites. Chem Technol Fuels Oil 54(1):37–43. https://doi.org/10.1007/s10553-018-0895-x
Prodpran T et al (2013) Physico-chemical properties of gelatin films incorporated with different hydrocolloids. Int Proc Chem Biol Environ Eng 53:82–86. https://doi.org/10.7763/IPCBEE
Fazlali F, Reza Mahjoub A, Abazari R (2015) A new route for synthesis of spherical NiO nanoparticles via emulsion nano-reactors with enhanced photocatalytic activity. Solid State Sci 48:263–269. https://doi.org/10.1016/j.solidstatesciences.2015.08.022
Roshanravan B et al (2015) Enhancement of nitrogen release properties of urea–kaolinite fertilizer with chitosan binder. Chem Speciat Bioavailab 27(1):44–51. https://doi.org/10.1080/09542299.2015.1023090
Kottegoda N et al (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11(2):1214–1221. https://doi.org/10.1021/acsnano.6b07781
Iqbal DN et al (2020) Synthesis and characterization of chitosan and guar gum based ternary blends with polyvinyl alcohol. Int J Biol Macromol 143:546–554. https://doi.org/10.1016/j.ijbiomac.2019.12.043
Eghbali Babadi F et al (2021) Release mechanisms and kinetic models of gypsum–sulfur–zeolite-coated urea sealed with microcrystalline wax for regulated dissolution. ACS Omega 6(17):11144–11154. https://doi.org/10.1021/acsomega.0c04353
Irfan M et al (2018) Synthesis and characterization of zinc-coated urea fertilizer. J Plant Nutr 41(13):1625–1635. https://doi.org/10.1080/01904167.2018.1454957
Al-Zahrani S (2000) Utilization of polyethylene and paraffin waxes as controlled delivery systems for different fertilizers. Ind Eng Chem Res 39(2):367–371. https://doi.org/10.1021/ie980683f
Ye H-M et al (2020) Degradable polyester/urea inclusion complex applied as a facile and environment-friendly strategy for slow-release fertilizer: performance and mechanism. J Chem Eng 381:122704. https://doi.org/10.1016/j.cej.2019.122704
Shah GA et al (2021) Toxicity of NiO nanoparticles to soil nutrient availability and herbage N uptake from poultry manure. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-91080-y
Ben-Moshe T et al (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90(2):640–646. https://doi.org/10.1016/j.chemosphere.2012.09.018
Carbone S et al (2014) Bioavailability and biological effect of engineered silver nanoparticles in a forest soil. J Hazard Mater 280:89–96. https://doi.org/10.1016/j.jhazmat.2014.07.055
Avila-Arias H et al (2019) Impacts of molybdenum-, nickel-, and lithium-oxide nanomaterials on soil activity and microbial community structure. Sci Total Environ 652:202–211. https://doi.org/10.1016/j.scitotenv.2018.10.189
Kheirallah DAM, El-Samad LM, Abdel-Moneim AM (2021) DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). Sci Total Environ 753:141743. https://doi.org/10.1016/j.scitotenv.2020.141743
Beig B et al (2022) Facile coating of micronutrient zinc for slow release urea and its agronomic effects on field grown wheat (Triticum aestivum L.). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.155965
Zhao J et al (2013) Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations. For Ecol Manag 310:80–86. https://doi.org/10.1016/j.foreco.2013.08.013
Khan M, Scullion J (2002) Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl Soil Ecol 20(2):145–155. https://doi.org/10.1016/S0929-1393(02)00018-5
Rieuwerts JS et al (1998) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Speciat Bioavail 10(2):61–75. https://doi.org/10.3184/095422998782775835
Montaño NM, García-Oliva F, Jaramillo VJ (2007) Dissolved organic carbon affects soil microbial activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant Soil 295(1):265–277. https://doi.org/10.1007/s11104-007-9281-x
Dixon NE et al (1975) Jack bean. Simple biological role for nickel. J Am Chem Soc 97(14):4131–4133. https://doi.org/10.1021/ja00847a045
Polacco JC, Mazzafera P, Tezotto T (2013) Opinion–nickel and urease in plants: still many knowledge gaps. Plant Sci 199:79–90. https://doi.org/10.1016/j.plantsci.2012.10.010
González-Guerrero M et al (2014) Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation. Front Plant Sci 5:45. https://doi.org/10.3389/fpls.2014.00045
Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57. https://doi.org/10.1007/s40003-012-0049-z
Asadishad B et al (2018) Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ Sci Technol 52(4):1908–1918. https://doi.org/10.1021/acs.est.7b05389
Jośko I, Oleszczuk P, Futa B (2014) The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232:528–537. https://doi.org/10.1016/j.geoderma.2014.06.012
Chahardoli A et al (2020) Effects of engineered aluminum and nickel oxide nanoparticles on the growth and antioxidant defense systems of Nigella arvensis L. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-60841-6
Dempster D et al (2012) Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354(1):311–324. https://doi.org/10.1007/s11104-011-1067-5
Giroto AS et al (2019) Controlled release of nitrogen using urea-melamine-starch composites. J Clean Prod 217:448–455. https://doi.org/10.1016/j.jclepro.2019.01.275
Hassanein A, Keller E, Lansing S (2021) Effect of metal nanoparticles in anaerobic digestion production and plant uptake from effluent fertilizer. Bioresour Technol 321:124455. https://doi.org/10.1016/j.biortech.2020.124455
Geng J et al (2015) Synchronized relationships between nitrogen release of controlled release nitrogen fertilizers and nitrogen requirements of cotton. Field Crops Res 184:9–16. https://doi.org/10.1016/j.fcr.2015.09.001