Polyme Không Thải Biodegradable Bọc Hạt Nano Nickel Để Giải Phóng Chậm Urea Thúc Đẩy Năng Suất Cỏ Rhode Và Khôi Phục Nitơ

Journal of Polymers and the Environment - Tập 31 - Trang 1866-1883 - 2022
Bilal Beig1, Muhammad Bilal Khan Niazi1, Zaib Jahan1, Munir Zia2, Ghulam Abbas Shah3, Zahid Iqbal4
1Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology, Islamabad, Pakistan
2Research and Development Department, Fauji Fertilizer Company Limited, Rawalpindi, Pakistan
3Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
4Institute of Soil and Environmental Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan

Tóm tắt

Có một nhu cầu cấp thiết cho việc phát triển các công thức phân bón nitơ (N) bền vững và có hiệu quả sử dụng cao để đảm bảo an ninh lương thực và giảm thiểu biến đổi khí hậu. Gần đây, công nghệ nano đã cho thấy tiềm năng đóng góp vào sản xuất hóa chất nông nghiệp bền vững thông qua việc bọc các vật liệu nano hữu cơ và vô cơ. Trong nghiên cứu này, chúng tôi đã khám phá việc sử dụng các hạt nano encapsulated nickel với các lớp bọc phân hủy sinh học khác nhau như: tinh bột, polyvinyl alcohol (PVA), gum arabica, gelatin, mật mía và sáp paraffin (PW) để cải thiện các tính chất vật lý của phân bón N thông thường trong hệ thống cây trồng đất. Các kết quả cho thấy việc bọc hạt ure bằng các hạt nano encapsulated nickel đã làm tăng đáng kể tính khả dụng của N và do đó năng suất chất khô của cỏ Rhode. Các vật liệu bọc làm giảm độ hòa tan và tăng cường khả năng chịu lực của các hạt. Phương pháp điều trị UC-5 chứa tinh bột, PVA, mật mía, PW và Ni-NPs cho kết quả tốt nhất về tỷ lệ giải phóng (77,96% lượng ure được giải phóng sau 120 phút so với 100% lượng ure được giải phóng cho hạt không bọc), độ cứng nén (70 ± 0,27 N) và năng suất chất khô của cỏ Rhode (58,55 g/pot). Các kết quả cho thấy rằng phương pháp điều trị UC-5 cải thiện đáng kể nitơ khoáng trong đất so với các hạt không bọc và ure chỉ bọc bằng NiO-NPs. Do đó, công thức này sẽ được xem xét để cải thiện khả năng hấp thụ N của cây trồng dưới nông nghiệp bền vững và sạch.

Từ khóa

#Phân bón nitơ #công nghệ nano #vật liệu bọc sinh học #cỏ Rhode #năng suất cây trồng #nông nghiệp bền vững

Tài liệu tham khảo

Wang Y, Lu Y (2020) Evaluating the potential health and economic effects of nitrogen fertilizer application in grain production systems of China. J Clean Prod 264:121635. https://doi.org/10.1016/j.jclepro.2020.121635 Wang Y et al (2019) Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci Total Environ 657:96–102. https://doi.org/10.1016/j.scitotenv.2018.12.029 Prathap S et al (2022) Role of zinc solubilizing bacteria in enhancing growth and nutrient accumulation in rice plants (Oryza sativa) grown on zinc (Zn) deficient submerged soil. Soil Sci Plant Nutr 22(1):971–984. https://doi.org/10.1007/s42729-021-00706-7 Marion GS et al (2021) Linking isotopic signatures of nitrogen in nearshore coral skeletons with sources in catchment runoff. Mar Pollut Bull 173:113054. https://doi.org/10.1016/j.marpolbul.2021.113054 Salim N, Raza A (2020) Nutrient use efficiency (NUE) for sustainable wheat production: a review. J Plant Nutr 43(2):297–315. https://doi.org/10.1080/01904167.2019.1676907 Smith W et al (2020) Towards an improved methodology for modelling climate change impacts on cropping systems in cool climates. Sci Total Environ 728:138845. https://doi.org/10.1016/j.scitotenv.2020.138845 Liu J et al (2019) Bio-based elastic polyurethane for controlled-release urea fertilizer: fabrication, properties, swelling and nitrogen release characteristics. J Clean Prod 209:528–537. https://doi.org/10.1016/j.jclepro.2018.10.263 Wang X et al (2019) The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv Agron 153:121–173. https://doi.org/10.1016/bs.agron.2018.08.003 Beig B et al (2020) Biodegradable polymer coated granular urea slows down N release kinetics and improves spinach productivity. Polymers 12(11):2623. https://doi.org/10.3390/polym12112623 Beig B et al (2020) Slow-release urea prills developed using organic and inorganic blends in fluidized bed coater and their effect on spinach productivity. Sustainability 12(15):5944. https://doi.org/10.3390/su12155944 Lum YH et al (2013) Characterization of urea encapsulated by biodegradable starch-PVA-glycerol. J Polym Environ 21(4):1083–1087 Zafar N et al (2021) Starch and polyvinyl alcohol encapsulated biodegradable nanocomposites for environment friendly slow release of urea fertilizer. Adv Chem Eng 7:100123. https://doi.org/10.1016/j.ceja.2021.100123 Khan O et al (2021) Green synthesis and evaluation of calcium-based nanocomposites fertilizers: a way forward to sustainable agricultural. J Saudi Soc Agric Sci 20(8):519–529. https://doi.org/10.1016/j.jssas.2021.06.005 Svane S et al (2020) Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci Rep 10(1):1–14. https://doi.org/10.1038/s41598-020-65107-9 Sigurdarson JJ, Svane S, Karring H (2018) The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev Environ Sci Biotechnol 17(2):241–258. https://doi.org/10.1007/s11157-018-9466-1 Modolo LV et al (2018) A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s. J Adv Res 13:29–37. https://doi.org/10.1016/j.jare.2018.04.001 North JA et al (2020) A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis. Science 369(6507):1094–1098. https://doi.org/10.1126/science.abb6310 Bosse MA et al (2021) Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants. Plant Physiol Biochem 166:512–521. https://doi.org/10.1016/j.plaphy.2021.06.007 Birrell JA et al (2021) The catalytic cycle of [FeFe] hydrogenase: a tale of two sites. Coord Chem Rev 449:214191. https://doi.org/10.1016/j.ccr.2021.214191 Hassan MU et al (2019) Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ Sci Pollut Res 26(13):12673–12688. https://doi.org/10.1007/s11356-019-04892-x McCain JSP et al (2021) Cellular costs underpin micronutrient limitation in phytoplankton. Sci Adv 7(32):eabg6501. https://doi.org/10.1126/sciadv.abg6501 Moreno-Jiménez E et al (2022) Aridity and geochemical drivers of soil micronutrient and contaminant availability in European drylands. Eur J Soil Sci 73(1):e13163. https://doi.org/10.1111/ejss.13163 Mikula K et al (2020) Controlled release micronutrient fertilizers for precision agriculture—a review. Sci Total Environ 712:136365. https://doi.org/10.1016/j.scitotenv.2019.136365 Siqueira Freitas D et al (2018) Hidden nickel deficiency? Nickel fertilization via soil improves nitrogen metabolism and grain yield in soybean genotypes. Front Plant Sci 9:614. https://doi.org/10.3389/fpls.2018.00614 Shahzad B et al (2018) Nickel; whether toxic or essential for plants and environment—a review. Plant Physiol Biochem 132:641–651. https://doi.org/10.1016/j.plaphy.2018.10.014 Genchi G et al (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17(3):679. https://doi.org/10.3390/ijerph17030679 Menon A, Wang J-Y, Giannis A (2017) Optimization of micronutrient supplement for enhancing biogas production from food waste in two-phase thermophilic anaerobic digestion. Waste Manage 59:465–475. https://doi.org/10.1016/j.wasman.2016.10.017 Usman M et al (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 721:137778. https://doi.org/10.1016/j.scitotenv.2020.137778 Beig B et al (2022) Nanotechnology-based controlled release of sustainable fertilizers. A review. Environ Chem Lett. https://doi.org/10.1007/s10311-022-01409-w Majumdar S, Keller AA (2021) Omics to address the opportunities and challenges of nanotechnology in agriculture. Crit Rev Environ Sci Technol 51(22):2595–2636. https://doi.org/10.1080/10643389.2020.1785264 Tarafder C et al (2020) Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. ACS Omega 5(37):23960–23966 Sobati-Nasab Z, Alirezalu A, Noruzi P (2021) Effect of foliar application of nickel on physiological and phytochemical characteristics of pot marigold (Calendula officinalis). J Agric Res 3:100108 Dimkpa CO et al (2022) Synthesis and characterization of novel dual-capped Zn–urea nanofertilizers and application in nutrient delivery in wheat. Environ Sci Adv 1(1):47–58 Tientong J et al (2014) Synthesis of nickel and nickel hydroxide nanopowders by simplified chemical reduction. J Nanotechnol. https://doi.org/10.1155/2014/193162 Quadri TW et al (2017) Zinc oxide nanocomposites of selected polymers: synthesis, characterization, and corrosion inhibition studies on mild steel in HCl solution. ACS Omega 2(11):8421–8437. https://doi.org/10.1021/acsomega.7b01385 Zhang M, Yang J (2021) Preparation and characterization of multifunctional slow release fertilizer coated with cellulose derivatives. Int J Polym Mater Polym Biomater 70(11):774–781. https://doi.org/10.1080/00914037.2020.1765352 Sadaf J et al (2017) Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers. Sci Total Environ 607:715–724. https://doi.org/10.1016/j.scitotenv.2017.06.178 Munir MAM et al (2020) Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil. Chemosphere 240:124845. https://doi.org/10.1016/j.chemosphere.2019.124845 Sahu S et al (2022) Bacterial strains found in the soils of a municipal solid waste dumping site facilitated phosphate solubilization along with cadmium remediation. Chemosphere 287:132320. https://doi.org/10.1016/j.chemosphere.2021.132320 Aziz Y, Shah GA, Rashid MI (2019) ZnO nanoparticles and zeolite influence soil nutrient availability but do not affect herbage nitrogen uptake from biogas slurry. Chemosphere 216:564–575. https://doi.org/10.1016/j.chemosphere.2018.10.119 González M et al (2015) Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci Total Environ 505:446–453. https://doi.org/10.1016/j.scitotenv.2014.10.014 Naz MY et al (2014) Characterization of modified tapioca starch solutions and their sprays for high temperature coating applications. Sci World J. https://doi.org/10.1155/2014/375206 Azeem B et al (2020) Production and characterization of controlled release urea using biopolymer and geopolymer as coating materials. Polymers 12(2):400. https://doi.org/10.3390/polym12020400 Bortoletto-Santos R et al (2020) Polyurethane nanocomposites can increase the release control in granulated fertilizers by controlling nutrient diffusion. Appl Clay Sci 199:105874. https://doi.org/10.1016/j.clay.2020.105874 Tian H et al (2017) Fabrication and properties of polyvinyl alcohol/starch blend films: effect of composition and humidity. Int J Biol Macromol 96:518–523. https://doi.org/10.1016/j.ijbiomac.2016.12.067 Aleksandrova E et al (2018) Structural and mechanical properties of paraffin wax composites. Chem Technol Fuels Oil 54(1):37–43. https://doi.org/10.1007/s10553-018-0895-x Prodpran T et al (2013) Physico-chemical properties of gelatin films incorporated with different hydrocolloids. Int Proc Chem Biol Environ Eng 53:82–86. https://doi.org/10.7763/IPCBEE Fazlali F, Reza Mahjoub A, Abazari R (2015) A new route for synthesis of spherical NiO nanoparticles via emulsion nano-reactors with enhanced photocatalytic activity. Solid State Sci 48:263–269. https://doi.org/10.1016/j.solidstatesciences.2015.08.022 Roshanravan B et al (2015) Enhancement of nitrogen release properties of urea–kaolinite fertilizer with chitosan binder. Chem Speciat Bioavailab 27(1):44–51. https://doi.org/10.1080/09542299.2015.1023090 Kottegoda N et al (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11(2):1214–1221. https://doi.org/10.1021/acsnano.6b07781 Iqbal DN et al (2020) Synthesis and characterization of chitosan and guar gum based ternary blends with polyvinyl alcohol. Int J Biol Macromol 143:546–554. https://doi.org/10.1016/j.ijbiomac.2019.12.043 Eghbali Babadi F et al (2021) Release mechanisms and kinetic models of gypsum–sulfur–zeolite-coated urea sealed with microcrystalline wax for regulated dissolution. ACS Omega 6(17):11144–11154. https://doi.org/10.1021/acsomega.0c04353 Irfan M et al (2018) Synthesis and characterization of zinc-coated urea fertilizer. J Plant Nutr 41(13):1625–1635. https://doi.org/10.1080/01904167.2018.1454957 Al-Zahrani S (2000) Utilization of polyethylene and paraffin waxes as controlled delivery systems for different fertilizers. Ind Eng Chem Res 39(2):367–371. https://doi.org/10.1021/ie980683f Ye H-M et al (2020) Degradable polyester/urea inclusion complex applied as a facile and environment-friendly strategy for slow-release fertilizer: performance and mechanism. J Chem Eng 381:122704. https://doi.org/10.1016/j.cej.2019.122704 Shah GA et al (2021) Toxicity of NiO nanoparticles to soil nutrient availability and herbage N uptake from poultry manure. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-91080-y Ben-Moshe T et al (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90(2):640–646. https://doi.org/10.1016/j.chemosphere.2012.09.018 Carbone S et al (2014) Bioavailability and biological effect of engineered silver nanoparticles in a forest soil. J Hazard Mater 280:89–96. https://doi.org/10.1016/j.jhazmat.2014.07.055 Avila-Arias H et al (2019) Impacts of molybdenum-, nickel-, and lithium-oxide nanomaterials on soil activity and microbial community structure. Sci Total Environ 652:202–211. https://doi.org/10.1016/j.scitotenv.2018.10.189 Kheirallah DAM, El-Samad LM, Abdel-Moneim AM (2021) DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). Sci Total Environ 753:141743. https://doi.org/10.1016/j.scitotenv.2020.141743 Beig B et al (2022) Facile coating of micronutrient zinc for slow release urea and its agronomic effects on field grown wheat (Triticum aestivum L.). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.155965 Zhao J et al (2013) Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations. For Ecol Manag 310:80–86. https://doi.org/10.1016/j.foreco.2013.08.013 Khan M, Scullion J (2002) Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl Soil Ecol 20(2):145–155. https://doi.org/10.1016/S0929-1393(02)00018-5 Rieuwerts JS et al (1998) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Speciat Bioavail 10(2):61–75. https://doi.org/10.3184/095422998782775835 Montaño NM, García-Oliva F, Jaramillo VJ (2007) Dissolved organic carbon affects soil microbial activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant Soil 295(1):265–277. https://doi.org/10.1007/s11104-007-9281-x Dixon NE et al (1975) Jack bean. Simple biological role for nickel. J Am Chem Soc 97(14):4131–4133. https://doi.org/10.1021/ja00847a045 Polacco JC, Mazzafera P, Tezotto T (2013) Opinion–nickel and urease in plants: still many knowledge gaps. Plant Sci 199:79–90. https://doi.org/10.1016/j.plantsci.2012.10.010 González-Guerrero M et al (2014) Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation. Front Plant Sci 5:45. https://doi.org/10.3389/fpls.2014.00045 Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57. https://doi.org/10.1007/s40003-012-0049-z Asadishad B et al (2018) Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ Sci Technol 52(4):1908–1918. https://doi.org/10.1021/acs.est.7b05389 Jośko I, Oleszczuk P, Futa B (2014) The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232:528–537. https://doi.org/10.1016/j.geoderma.2014.06.012 Chahardoli A et al (2020) Effects of engineered aluminum and nickel oxide nanoparticles on the growth and antioxidant defense systems of Nigella arvensis L. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-60841-6 Dempster D et al (2012) Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354(1):311–324. https://doi.org/10.1007/s11104-011-1067-5 Giroto AS et al (2019) Controlled release of nitrogen using urea-melamine-starch composites. J Clean Prod 217:448–455. https://doi.org/10.1016/j.jclepro.2019.01.275 Hassanein A, Keller E, Lansing S (2021) Effect of metal nanoparticles in anaerobic digestion production and plant uptake from effluent fertilizer. Bioresour Technol 321:124455. https://doi.org/10.1016/j.biortech.2020.124455 Geng J et al (2015) Synchronized relationships between nitrogen release of controlled release nitrogen fertilizers and nitrogen requirements of cotton. Field Crops Res 184:9–16. https://doi.org/10.1016/j.fcr.2015.09.001