Biodegradable Inverse Opals with Controlled Discoloration

Advanced Materials Interfaces - Tập 5 Số 10 - 2018
Ji‐Won Kim1, Joon‐Seok Lee1, Shin‐Hyun Kim1
1Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

Tóm tắt

AbstractColloidal crystals and their derivatives possess photonic bandgap property, being useful in various applications, including structural coloration and colorimetric sensing. In this work, inverse opals made of a biodegradable polymer, poly(lactic‐co‐glycolic acid) (PLGA), are prepared to provide a controlled discoloration. To make PLGA inverse opals, a monolayer of silica particles is first deposited on the surface of PLGA film by spin coating, which is then partially embedded into the film by thermal annealing. Opal is deposited on the monolayer‐coated PLGA film by dip coating and then embedded into the underlying PLGA film. Selective removal of silica particles leaves behind a face‐centered cubic lattice of air cavity in PLGA matrix. The inverse opals whose framework is made of PLGA exhibit a pronounced structural color in dried state. When they are subjected to water, PLGA degrades by hydrolysis of ester groups, which results in the gradual discoloration. The discoloration rate is controllable by varying the pH of surrounding medium and cavity sizes, so that it can act as a colorimetric indicator of valid periods for drugs, foods, and cosmetics. In addition, high biocompatibility and unique optical appearance further render the inverse opals useful as edible anticounterfeiting materials for valuable drugs.

Từ khóa


Tài liệu tham khảo

10.1080/09500349414550261

10.1038/386143a0

10.1016/S0079-6727(99)00004-X

10.1002/adma.201001227

10.1038/asiamat.2010.192

10.1038/nature01941

10.1098/rsif.2008.0354.focus

10.1073/pnas.2133313100

10.1038/ncomms7368

10.1039/c3ra41096j

10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J

10.1039/b716393b

10.1002/adma.201000356

10.1021/ar1001236

10.1021/ja304751k

10.1021/acsami.5b07443

10.1006/jcis.2000.7190

10.1016/S0254-0584(02)00492-3

10.1002/smll.200500390

10.1002/adma.200902456

10.1126/science.282.5390.897

10.1109/50.802976

10.1038/35013024

10.1021/cm702107n

10.1021/ja0495056

10.1073/pnas.1000954107

10.1002/adfm.201000143

10.1016/j.photonics.2016.02.004

10.1002/anie.201307828

10.1002/adma.201304654

10.1021/cm4012603

10.1002/adma.200703115

10.1021/nl3029202

10.1002/adma.200702851

10.1021/la0511945

10.1021/la062150e

10.1002/anie.200900210

10.1021/cm0493445

10.1002/adma.200502263

10.1149/1.2666588

10.1063/1.119849

10.1103/PhysRevB.60.11422

10.1098/rsta.1904.0024

10.1021/la00048a013

10.1039/c3ra41764f

10.1016/S0142-9612(00)00115-0

10.1016/S0169-409X(02)00228-4

10.3390/polym3031377

10.1016/j.jconrel.2012.01.043

10.1016/j.addr.2012.09.004

10.1021/bm0343040

10.1016/j.jconrel.2006.11.023

10.1016/S0032-3861(00)00646-7

10.1016/S0168-3659(02)00137-2

10.1021/ja065071y

10.1021/la7025285