Biocorrosion of copper metal by Aspergillus niger
Tài liệu tham khảo
Antsotegi-Uskola, 2020, New insights into copper homeostasis in filamentous fungi, Int. Microbiol., 23, 65, 10.1007/s10123-019-00081-5
Bhandari, 2015, Modelling of pitting corrosion in marine and offshore steel structures–a technical review, J. Loss Prev. Process. Ind., 37, 39, 10.1016/j.jlp.2015.06.008
Burford, 2006, Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono- and dihydrate in carboniferous limestone microcosms, Geomicrobiol. J., 23, 599, 10.1080/01490450600964375
Burford, 2003, Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize, Aquaculture, 219, 393, 10.1016/S0044-8486(02)00575-6
Burgstaller, 1993, Leaching of metals with fungi, J. Biotechnol., 27, 91, 10.1016/0168-1656(93)90101-R
Clausen, 2003, Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives, Int. Biodeterior. Biodegrad., 51, 139, 10.1016/S0964-8305(02)00098-7
Clausen, 2000, Correlation between oxalic acid production and copper tolerance in Wolfiporia cocos, Int. Biodeterior. Biodegrad., 46, 69, 10.1016/S0964-8305(00)00044-5
Crispim, 2005, Cyanobacteria and biodeterioration of cultural heritage: a review, Microb. Ecol., 49, 1, 10.1007/s00248-003-1052-5
de la Fuente, 2008, Morphological study of 16-year patinas formed on copper in a wide range of atmospheric exposures, Corrosion Sci., 50, 268, 10.1016/j.corsci.2007.05.030
Dutton, 1996, Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment, Can. J. Microbiol., 42, 881, 10.1139/m96-114
Elwell, 1967
Emde, 1992, Initial investigation of microbially influenced corrosion (MIC) in a low temperature water distribution system, Water Res., 26, 169, 10.1016/0043-1354(92)90216-Q
Ferrier, 2019, Colonization, penetration and transformation of manganese oxide nodules by Aspergillus niger, Environ. Microbiol., 21, 1821, 10.1111/1462-2920.14591
Fomina, 2004, Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi, Geomicrobiol. J., 21, 351, 10.1080/01490450490462066
Fomina, 2005, Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica, Appl. Environ. Microbiol., 71, 371, 10.1128/AEM.71.1.371-381.2005
Fomina, 2005, Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi, Soil Biol. Biochem., 37, 851, 10.1016/j.soilbio.2004.10.013
Fomina, 2007, X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi, Environ. Microbiol., 9, 308, 10.1111/j.1462-2920.2006.01139.x
Fomina, 2008, Role of fungi in the biogeochemical fate of depleted uranium, Curr. Biol., 18, 375, 10.1016/j.cub.2008.03.011
Fomina, 2010, Rock-building fungi, Geomicrobiol. J., 27, 624, 10.1080/01490451003702974
Fomina, 2017, Biogeochemical spatio-temporal transformation of copper in Aspergillus niger colonies grown on malachite with different inorganic nitrogen sources, Environ. Microbiol., 19, 1310, 10.1111/1462-2920.13664
Frankfort, 1956, The art and architecture of the ancient orient, J. Aesthet. Art Critic., 14, 388, 10.2307/427058
Freeman, 2008, Copper-based wood preservatives, For. Prod. J., 58, 6
Fridovich, 1983, Superoxide radical: an endogenous toxicant, Annu. Rev. Pharmacol. Toxicol., 23, 239, 10.1146/annurev.pa.23.040183.001323
Gadd, 1993, Interactions of fungi with toxic metals, New Phytol., 124, 25, 10.1111/j.1469-8137.1993.tb03796.x
Gadd, 1999, Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes, vol. 41, 47
Gadd, 2007, Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation, Mycol. Res., 111, 3, 10.1016/j.mycres.2006.12.001
Gadd, 2010, Metals, minerals and microbes: geomicrobiology and bioremediation, Microbiology, 156, 609, 10.1099/mic.0.037143-0
Gadd, 2017, Fungi, rocks, and minerals, Elements, 13, 171, 10.2113/gselements.13.3.171
Gadd, 2017, Geomicrobiology of the built environment, Nature Microbiology, 2, 16275, 10.1038/nmicrobiol.2016.275
Gadd, 2014, Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation, Fungal Biology Reviews, 28, 36, 10.1016/j.fbr.2014.05.001
Gadd, 2017, Bioprotection of the built environment and cultural heritage, Microbial Biotechnology, 10, 1152, 10.1111/1751-7915.12750
Gadd, 1980, Effect of copper on morphology of Aureobasidium pullulans, Trans. Br. Mycol. Soc., 74, 387, 10.1016/S0007-1536(80)80168-9
Gadd, 1980, Influence of pH on copper uptake and toxicity in Aureobasidium pullulans, Trans. Br. Mycol. Soc., 75, 91, 10.1016/S0007-1536(80)80198-7
Gadd, 1985, Copper uptake by Penicillium ochrochloron: influence of pH on toxicity and demonstration of energy-dependent copper influx using protoplasts, Microbiology, 131, 1875, 10.1099/00221287-131-8-1875
Gadd, 1985, Methods for assessment of heavy metal toxicity towards fungi and yeasts, Toxic. Assess., 1, 169, 10.1002/tox.2540010204
Gharieb, 2004, Transformation of copper oxychloride fungicide into copper oxalate by tolerant fungi and the effect of nitrogen source on tolerance, Biodegradation, 15, 49, 10.1023/B:BIOD.0000009962.48723.df
Graedel, 1987, Copper patinas formed in the atmosphere-I. Introduction, Corrosion Sci., 27, 639, 10.1016/0010-938X(87)90047-3
Green, 2003, Copper tolerance of brown-rot fungi: time course of oxalic acid production, Int. Biodeterior. Biodegrad., 51, 145, 10.1016/S0964-8305(02)00099-9
Green, 2005, Copper tolerance of brown-rot fungi: oxalic acid production in southern pine treated with arsenic-free preservatives, Int. Biodeterior. Biodegrad., 56, 75, 10.1016/j.ibiod.2005.04.003
Gu, 2007, Microbial colonization of polymeric materials for space applications and mechanisms of biodeterioration: a review, Int. Biodeterior. Biodegrad., 59, 170, 10.1016/j.ibiod.2006.08.010
Hastrup, 2005, Tolerance of Serpula lacrymans to copper-based wood preservatives, Int. Biodeterior. Biodegrad., 56, 173, 10.1016/j.ibiod.2005.06.008
Hastrup, 2012, Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi, Int. Biodeterior. Biodegrad., 75, 109, 10.1016/j.ibiod.2012.05.030
Herrera, 2009, Surface analysis and materials characterization for the study of biodeterioration and weathering effects on cultural property, Int. Biodeterior. Biodegrad., 63, 813, 10.1016/j.ibiod.2009.05.002
Horeh, 2016, Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger, J. Power Sources, 320, 257, 10.1016/j.jpowsour.2016.04.104
Humar, 2005, Influence of acidification of CCB (Cu/Cr/B) impregnated wood on fungal copper tolerance, Chemosphere, 58, 743, 10.1016/j.chemosphere.2004.09.031
Iskandar, 2011, Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem, J. Environ. Sci., 23, 824, 10.1016/S1001-0742(10)60475-5
Iverson, 1987, Microbial corrosion of metals, Adv. Appl. Microbiol., 32, 1, 10.1016/S0065-2164(08)70077-7
Jarosz-Wilkołazka, 2003, Oxalate production by wood-rotting fungi growing in toxic metal-amended medium, Chemosphere, 52, 541, 10.1016/S0045-6535(03)00235-2
Joseph, 2012, Protection of metal artifacts with the formation of metal–oxalates complexes by Beauveria bassiana, Front. Microbiol., 2, 270, 10.3389/fmicb.2011.00270
Joseph, 2012, Spectroscopic characterization of an innovative biological treatment for corroded metal artefacts, J. Raman Spectrosc., 43, 1612, 10.1002/jrs.4164
Kang, 2019, Biotransformation of lanthanum by Aspergillus niger, Appl. Microbiol. Biotechnol., 103, 981, 10.1007/s00253-018-9489-0
Kang, 2020, Monazite transformation into Ce- and La-containing oxalates by Aspergillus niger, Environ. Microbiol., 22, 1635, 10.1111/1462-2920.14964
Karamushka, 1996, Inhibition of H+ efflux from Saccharomyces cerevisiae by insoluble metal phosphates and protection by calcium and magnesium: inhibitory effects a result of soluble metal cations, Mycol. Res., 100, 707, 10.1016/S0953-7562(96)80203-6
Kartal, 2015, Bioremediation and decay of wood treated with ACQ, micronized ACQ, nano-CuO and CCA wood preservatives, Int. Biodeterior. Biodegrad., 99, 95, 10.1016/j.ibiod.2015.01.004
Karunasekera, 2019, Copper tolerance of the soft-rot fungus Phialophora malorum grown in-vitro revealed by microscopy and global protein expression, Int. Biodeterior. Biodegrad., 137, 147, 10.1016/j.ibiod.2018.12.001
Kolenčík, 2013, Leaching of zinc, cadmium, lead and copper from electronic scrap using organic acids and the Aspergillus niger strain, Fresenius Environ. Bull., 22, 3673
Lamichhane, 2018, Thirteen decades of antimicrobial copper compounds applied in agriculture. A review, Agron. Sustain. Dev., 38, 28, 10.1007/s13593-018-0503-9
Lapeyrie, 1987, Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch, ex Fr.) Fr, New Phytol., 106, 139, 10.1111/j.1469-8137.1987.tb04797.x
Li, 2017, Biosynthesis of copper carbonate nanoparticles by ureolytic fungi, Appl. Microbiol. Biotechnol., 101, 7397, 10.1007/s00253-017-8451-x
Macomber, 2009, The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity, Proceedings of the National Academy of Sciences of the USA, 106, 8344, 10.1073/pnas.0812808106
Marabelli, 1993, La corrosione dei bronzi esposti all'aperto: problem di caratterizzazione, Metallurgia Italiana, 85, 247
Miller, 2012, Bioreceptivity of building stones: a review, Sci. Total Environ., 426, 1, 10.1016/j.scitotenv.2012.03.026
Mohanty, 2017, Bioleaching of manganese by Aspergillus sp. isolated from mining deposits, Chemosphere, 172, 302, 10.1016/j.chemosphere.2016.12.136
Mulligan, 2004, Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger, J. Hazard Mater., 110, 77, 10.1016/j.jhazmat.2004.02.040
Murphy, 1983, Production of copper oxalate by some copper tolerant fungi, Trans. Br. Mycol. Soc., 81, 165, 10.1016/S0007-1536(83)80223-X
Nica, 2000, Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers, Int. Biodeterior. Biodegrad., 46, 61, 10.1016/S0964-8305(00)00064-0
Ohno, 2015, Insights into the mechanism of copper-tolerance in Fibroporia radiculosa: the biosynthesis of oxalate, Int. Biodeterior. Biodegrad., 105, 90, 10.1016/j.ibiod.2015.08.016
Onofri, 2014, Rock-inhabiting fungi and their role in deterioration of stone monuments in the Mediterranean area, Plant Biosyst., 148, 384, 10.1080/11263504.2013.877533
Palmieri, 2019, Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions, Adv. Appl. Microbiol., 106, 49, 10.1016/bs.aambs.2018.10.001
Parvathi, 2007, Biosorption of manganese by Aspergillus niger and Saccharomyces cerevisiae, World J. Microbiol. Biotechnol., 23, 671, 10.1007/s11274-006-9281-7
Rhee, 2012, Lead transformation to pyromorphite by fungi, Curr. Biol., 22, 237, 10.1016/j.cub.2011.12.017
Rhee, 2016, A new lead hydroxycarbonate produced during transformation of lead metal by the soil fungus Paecilomyces javanicus, Geomicrobiol. J., 33, 250, 10.1080/01490451.2015.1076544
Rhee, 2014, Pyromorphite formation in a fungal biofilm community growing on lead metal, Environ. Microbiol., 16, 1441, 10.1111/1462-2920.12416
Roos, 1984, Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium, Microbiology, 130, 1007, 10.1099/00221287-130-4-1007
Ruijter, 1999, Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese, Microbiology, 145, 2569, 10.1099/00221287-145-9-2569
Santhiya, 2005, Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid, J. Biotechnol., 116, 171, 10.1016/j.jbiotec.2004.10.011
Sayer, 1997, Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger, Mycol. Res., 101, 653, 10.1017/S0953756296003140
Sayer, 1995, Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance, Mycol. Res., 99, 987, 10.1016/S0953-7562(09)80762-4
Sazanova, 2015, Organic acids induce tolerance to zinc-and copper-exposed fungi under various growth conditions, Curr. Microbiol., 70, 520, 10.1007/s00284-014-0751-0
Scheerer, 2009, Microbial deterioration of stone monuments-an updated overview, Adv. Appl. Microbiol., 66, 97, 10.1016/S0065-2164(08)00805-8
Schilling, 2006, Metal accumulation without enhanced oxalate secretion in wood degraded by brown rot fungi, Appl. Environ. Microbiol., 72, 5662, 10.1128/AEM.00281-06
Seh-Bardan, 2012, Bioleaching of heavy metals from mine tailings by Aspergillus fumigatus, Ann. Finance, 16, 57
Siegel, 1983, Bio-corrosion: solubilization and accumulation of metals by fungi, Water Air Soil Pollut., 19, 229, 10.1007/BF00599050
Smith, 2017, Copper acquisition and utilization in fungi, Annu. Rev. Microbiol., 71, 597, 10.1146/annurev-micro-030117-020444
Starkey, 1973, Effect of pH on toxicity of copper to Scytalidium sp., a copper-tolerant fungus, and some other fungi, Microbiology, 78, 217
Sterflinger, 2010, Fungi: their role in deterioration of cultural heritage, Fungal Biology Reviews, 24, 47, 10.1016/j.fbr.2010.03.003
Sterflinger, 2013, Microbial deterioration of cultural heritage and works of art-tilting at windmills?, Appl. Microbiol. Biotechnol., 97, 9637, 10.1007/s00253-013-5283-1
Suyamud, 2020, Biotransformation of struvite by Aspergillus niger: phosphate release and magnesium biomineralization as glushinskite, Environ. Microbiol., 22, 1588, 10.1111/1462-2920.14949
Turick, 2016, Review of concrete biodeterioration in relation to nuclear waste, J. Environ. Radioact., 151, 12, 10.1016/j.jenvrad.2015.09.005
Warscheid, 2000, Biodeterioration of stone: a review, Int. Biodeterior. Biodegrad., 46, 343, 10.1016/S0964-8305(00)00109-8
Wei, 2012, Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals, Environ. Microbiol., 14, 1744, 10.1111/j.1462-2920.2012.02776.x
Yang, 2019, Direct and indirect bioleaching of cobalt from low grade laterite and pyritic ores by Aspergillus niger, Geomicrobiol. J., 36, 940, 10.1080/01490451.2019.1654045
Yang, 2020, Biorecovery of cobalt and nickel using biomass-free culture supernatants from Aspergillus niger, Appl. Microbiol. Biotechnol., 104, 417, 10.1007/s00253-019-10241-2
Zelinka, 2009, Corrosion rates of fasteners in treated wood exposed to 100% relative humidity, J. Mater. Civ. Eng., 21, 758, 10.1061/(ASCE)0899-1561(2009)21:12(758)
Zelinka, 2011, The effect of tannins and pH on the corrosion of steel in wood extracts, Mater. Corros., 62, 739, 10.1002/maco.201005845
Zelinka, 2019, Copper distribution and oxidation states near corroded fasteners in treated wood, SN Applied Sciences, 1, 1, 10.1007/s42452-019-0249-2
Zelinka, 2019, Fungal–copper interactions in wood examined with large field of view synchrotron-based X-ray fluorescence microscopy, Wood Mater. Sci. Eng., 14, 174, 10.1080/17480272.2018.1458049