Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Kiểm soát sinh học Fusarium equiseti bằng cách sử dụng nanoparticle chitosan kết hợp với Trichoderma longibrachiatum và Penicillium polonicum
Tóm tắt
Một phương pháp kiểm soát sinh học an toàn và thân thiện với môi trường đối với Fusarium equiseti đã được phát triển dựa trên các nanoparticle chitosan (CNPs) kết hợp với Trichoderma longibrachiatum và Penicillium polonicum. Hai chủng của F. equiseti được phân lập từ cây cà chua bị héo, cũng như ba nấm đối kháng bao gồm Trichoderma longibrachiatum và hai chủng của Penicillium polonicum được phân lập từ đất xung quanh. Tất cả các nấm gây bệnh và nấm đối kháng được phân loại dựa trên chuỗi DNA gen. Hoạt tính kháng nấm của ba nấm đối kháng đã được nghiên cứu chống lại hai chủng của F. equiseti. Ngoài ra, CNPs được chuẩn bị theo phương pháp gel hóa ion sử dụng anion sodium tripolyphosphate trong dung dịch axit axetic được sử dụng để tăng cường hoạt tính kháng nấm của ba nấm đối kháng. Kết quả cho thấy sự kết hợp của T. longibrachiatum với CNPs và P. polonicum với CNPs đạt được hoạt tính kháng nấm cao đối với F. equiseti với tỷ lệ ức chế lần lượt là 71.05% và 66.7%.
Từ khóa
#Phân lập #Fusarium equiseti #nanoparticle chitosan #Trichoderma longibrachiatum #Penicillium polonicum #hoạt tính kháng nấmTài liệu tham khảo
Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanoparticulate material delivery to plants. Plant Sci. 2010;179(3):154–63.
Agrios GN. Significance of plant diseases Plant Pathol. London: Acad Press; 2000. p. 25–37.
Saremi H, Amiri ME, Mirabolfathi M. Application of soil solarization for controlling soilborne fungal pathogens in newly established Pistachio and Olive orchards. Int J fruit Sci. 2010;10(2):143–56.
Bentley AR, Cromey MG, Farrokhi-Nejad R, Leslie JF, Summerell BA, Burgess LW. Fusarium crown and root rot pathogens associated with wheat and grass stem bases on the South Island of New Zealand. Australas Plant Pathol. 2006;35(5):495–502.
Bockus WW, Bowden RL, Hunger RM, Morrill WL, Murray TD, Smiley RW. Compendium of wheat diseases and pests. Am Phytopath Soci. 2010. https://doi.org/10.1094/9780890546604.
Dananjaya SHS, Erandani W, Kim C-H, Nikapitiya C, Lee J, De Zoysa M. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. Int J Biol Macromol. 2017;105:478–88.
Boruah S, Dutta P. Fungus mediated biogenic synthesis and characterization of chitosan nanoparticles and its combine effect with Trichoderma asperellum against Fusarium oxysporum, Sclerotium rolfsii and Rhizoctonia solani. Indian Phytopathol. 2021;74(1):81–93.
Han YK, Dumin W, Park MJ, Bae YS, Park JH, Back CG. First report of fusarium wilt disease caused by Fusarium equiseti on grafted watermelon in Korea. Plant Dis. 2022. https://doi.org/10.1094/PDIS-08-21-1745-PDN.
Astudillo-Calderón S, Tello ML, de Robador JM, Pintos B, Gómez-Garay A. First Report of Fusarium equiseti Causing Vascular Wilt Disease on Vitis vinifera in Spain. Plant Dis. 2019;103(9):2471.
Luo M, Chen Y, He J, Tang X, Wu X, Xu C. Identification of a new Talaromyces strain DYM25 isolated from the Yap Trench as a biocontrol agent against Fusarium wilt of cucumber. Microbiol Res. 2021;251: 126841.
Nedumaran S, Vidhyasekaran P. Control of Fusarium semitectum infection in tomato seed. Seed Res. 1981;9:28–31.
Aigbe SO, Fawole B, Berner DK. A cowpea seed rot disease caused by Fusarium equiseti identified in Nigeria. Plant Dis. 1999;83(10):964.
Haddoudi I, Mhadhbi H, Gargouri M, Barhoumi F, Ben Romdhane S, Mrabet M. Occurrence of fungal diseases in faba bean (Vicia faba L.) under salt and drought stress. Eur J Plant Pathol. 2021;159(2):385–98.
Haddoudi I, Cabrefiga J, Mora I, Mhadhbi H, Montesinos E, Mrabet M. Biological control of Fusarium wilt caused by Fusarium equiseti in Vicia faba with broad spectrum antifungal plant-associated Bacillus spp. Biol Control. 2021;160: 104671.
Rai RP. Fusarium equiseti (Corda) Sacc. causing dry rot of potato tubers-a new report. Curr Sci. 1979;48:1043–45.
Aallam Y, et al. Multiple potential plant growth promotion activities of endemic Streptomyces spp from Moroccan sugar beet fields with their inhibitory activities against Fusarium spp. Microorganisms. 2021;9(7):1429.
Bryła M, et al. Recent research on fusarium mycotoxins in maize—a review. Foods. 2022;11(21):3465.
Kashyap PL, Xiang X, Heiden P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol. 2015;77:36–51.
Nagaraja H, Chennappa G, Rakesh S, Naik MK, Amaresh YS, Sreenivasa MY. Antifungal activity of Azotobacter nigricans against trichothecene-producing Fusarium species associated with cereals. Food Sci Biotechnol. 2016;25(4):1197–204.
Abdelmoteleb A, et al. Biocontrol of Fusarium spp., causal agents of damping-off in cotton plants by native Bacillus subtilis isolated from Prosopis juliflora. Int J Agric Biol. 2017;19:713–8.
Aguilar-Méndez MA, Martin-Martinez S, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espindola E. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanoparticle Res. 2011;13(6):2525–32.
Ali SM, Yousef NMH, Nafady NA. Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi”. J Nanomater. 2015. https://doi.org/10.1155/2015/218904.
Bramhanwade K, Shende S, Bonde S, Gade A, Rai M. Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett. 2016;14(2):229–35.
Panigrahi J, Behera D, Mohanty I, Subudhi U, Nayak BB, Acharya BS. Radio frequency plasma enhanced chemical vapor based ZnO thin film deposition on glass substrate: a novel approach towards antibacterial agent. Appl Surf Sci. 2011;258(1):304–11.
Fonseca AJ, et al. Anatase as an alternative application for preventing biodeterioration of mortars: evaluation and comparison with other biocides. Int Biodeterior Biodegradation. 2010;64(5):388–96.
Honary S, Gharaei-Fathabad E, Barabadi H, Naghibi F. Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis. J Nanosci Nanotechnol. 2013;13(2):1427–30.
Eid KAM, Salem HF, Zikry AAF, El-Sayed AFM, Sharaf MA. Antifungal effects of colloidally stabilized gold nanoparticles: screening by microplate assay. Nature. 2011;2:9.
Zheng LP, Zhang Z, Zhang B, Wang JW. Antifungal properties of Ag-SiO2 core-shell nanoparticles against phytopathogenic fungi. Adv Mat Res. 2012;476:814–8.
Cruz-Luna AR, Cruz-Martinez H, Vásquez-López A, Medina DI. Metal nanoparticles as novel antifungal agents for sustainable agriculture: current advances and future directions. J Fungi. 2021;7(12):1033.
Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crops Prod. 2013;45:423–9.
Wani IA, Ahmad T. Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids surfaces B Biointerfaces. 2013;101:162–70.
Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol. 2013;62:677–83.
Hasaneen M, Abou-Dobara MI, Nabih S, Mousa M. Preparation, optimization, characterization and antimicrobial activity of chitosan and calcium nanoparticles loaded with Streptomyces Rimosus extracted compounds as drug delivery systems. J Microbiol Biotechnol food Sci. 2022;11(6):e5020–e5020.
Pabón-Baquero D, Velázquez-del Valle MG, Evangelista-Lozano S, León-Rodriguez R, Hernández-Lauzardo AN. “Chitosan effects on phytopathogenic fungi and seed germination of Jatropha curcas L. Rev Chapingo Ser ciencias For y del Ambient. 2015;21(3):241–53.
Sathiyabama M, Parthasarathy R. Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr Polym. 2016;151:321–5.
Rozman NAS, Tong WY, Leong CR, Tan WN, Hasanolbasori MA, Abdullah SZ. Potential antimicrobial applications of chitosan nanoparticles (ChNP). J Microbiol Biotechnol. 2019. https://doi.org/10.4014/jmb.1904.04065.
El-Mohamedya RSR, Abd El-Aziz ME, Kamel S. Antifungal activity of chitosan nanoparticles against some plant pathogenic fungi in vitro. Agric Eng Int CIGR J. 2019;21:201–9.
Boruah S, Dutta P. Fungus mediated biogenic synthesis and characterizatuon of chitosan nanoparticles and its combine effect with Trichoderma asperellum against Fusarium oxysporum, Scleroium rolfsii and Rhizoctonia solani. Indian Phytopathology. 2021;74(1):81–93.
Abdel-Aliem HA, Gibriel AY, Rasmy MHN, Sahab AF, El-Nekeety AA, Abdel-Wahhab MA. Antifungal efficacy of chitosan nanoparticles against phytopathogenic fungi and inhibition of zearalenone production by Fusarium graminearum. Com Sci. 2019;10(3):338–45.
Muthukrishnan S, Ramalingam P. Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohyd Polym. 2016;151:321–5.
Barari H. Biocontrol of tomato Fusarium wilt by Trichoderma species under in vitro and in vivo conditions. Cercetari Agronomice in Moldova. 2016. https://doi.org/10.1515/cerce-2016-0008.
Abdel-lateif KS, Bakr RA. Internal transcribed spacers (ITS) based identification of Trichoderma isolates and biocontrol activity against Macrophomina phaseolina, Aspergillus niger and Meloidogyne incognita. African J Microbiol Res. 2018;12(30):715–22.
Tikhonov VE, et al. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2 (3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydr Polym. 2006;64(1):66–72.
Heller WE, Theiler-Hedtrich R. Antagonism of Chaetomium globosum, Gliocladium virens and Trichoderma viride to four soil-borne Phytophthora species. J Phytopathol. 1994;141(4):390–4.
Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology. 2012;40(1):53–8.
Chen J, Zhou L, Ud Din I, Arafat Y, Li Q, Wang J, Wu T, Wu L, Wu H, Qin X, Pokhre GR, Lin S, Lin W. Antagonistic activity of Trichoderma spp. against Fusarium oxysporum in Rhizosphere of radix pseudostellariae triggers the expression of host defense genes and improves its growth under long-term monoculture system. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.579920.
Larran S, Siurana MPS, Caselles JR, Simón MR, Perelló A. In Vitro antagonistic activity of Trichoderma harzianum against Fusarium sudanense causing seedling blight and seed rot on wheat. ACS Omega. 2020;5(36):23276–83.
Kareem TK, Ugoji EO, Aboaba OO. Biocontrol of Fusarium wilt of cucumber with Trichoderma longibrachiatum NGJ167 (Rifai). British Microbiol Res J. 2016;16(5):1–11.
Abdelmoteleb A, González-Mendoza D. A novel Streptomyces rhizobacteria from desert soil with diverse anti-fungal properties. Rhizosphere. 2020;16: 100243.
Abdelghany T, Alharbi AA, Al-Rajhi AMH. Suppression application of copper oxide nanoparticles for wilt-inducing. Fusarium Equiseti in Wheat. 2021. https://doi.org/10.21203/rs.3.rs-882655/v1.