Biocompatible fibers from fungal and shrimp chitosans for suture application

Current Research in Biotechnology - Tập 4 - Trang 530-536 - 2022
Natacha Perrin1, Ghasem Mohammadkhani, Farshad Homayouni Moghadam2, Cédric Delattre3,4, Akram Zamani1
1Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
2Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
3Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
4Institut Universitaire de France, Paris, France

Tài liệu tham khảo

Ávila Filho, 2019, Comparison between poliglecaprone and chitosan absorbable sutures in laparorrhaphy and cecorrhaphy in rabbits, J. Biomed. Mater. Res. B Appl. Biomater., 107, 2102, 10.1002/jbm.b.34303 Costa Da Silva, M., et al., 2020. Biodegradable polymeric wires: monofilament and multifilament. Mater. Res. Innov, 24(3): p. 166-170 10.1080/14328917.2019.1622256. da Silva, 2019, N-acetyl-D-glucosamine-loaded chitosan filaments biodegradable and biocompatible for use as absorbable surgical suture materials, Materials, 12, 1807, 10.3390/ma12111807 Dresvyanina, 2013, Influence of spinning conditions on properties of chitosan fibers, Fibre Chem., 44, 280, 10.1007/s10692-013-9446-8 East, 1993, Wet spinning of chitosan and the acetylation of chitosan fibers, J. Appl. Polym. Sci., 50, 1773, 10.1002/app.1993.070501013 El-Tahlawy, 2006, Chitosan: Aspects of fiber spinnability, J. Appl. Polym. Sci., 100, 1162, 10.1002/app.23201 Islam, 2017, Chitin and chitosan: structure, properties and applications in biomedical engineering, J. Polym. Environ., 25, 854, 10.1007/s10924-016-0865-5 Karthik, 2019, Sustainable Biopolymers in Textiles: An Overview, 1435 Knaul, 1998, Improvements in the drying process for wet-spun chitosan fibers, J. Appl. Polym. Sci., 69, 1435, 10.1002/(SICI)1097-4628(19980815)69:7<1435::AID-APP19>3.0.CO;2-S Kuznik, 2022, Pure chitosan-based fibers manufactured by a wet spinning lab-scale process using ionic liquids, Polymers, 14, 477, 10.3390/polym14030477 Mohammadkhani, 2021, New solvent and coagulating agent for development of chitosan fibers by wet spinning, Polymers, 13, 2121, 10.3390/polym13132121 Muñoz, 2015, Extraction of chitosan from Aspergillus niger mycelium and synthesis of hydrogels for controlled release of betahistine, React. Funct. Polym., 91–92, 1, 10.1016/j.reactfunctpolym.2015.03.008 Muthu, 2017, Introduction, 1 Nakayama, 2020, Dependence of water-permeable chitosan membranes on chitosan molecular weight and alkali treatment, Membranes, 10, 351, 10.3390/membranes10110351 Nawawi, 2019, Nanomaterials derived from fungal sources—is it the new hype?, Biomacromolecules, 21, 30, 10.1021/acs.biomac.9b01141 Paulin, 2020, +Brettanomyces bruxellensis displays variable susceptibility to chitosan treatment in wine, Front. Microbiol., 11 Reddy, N., Yang, Y., 2015. Chitosan Fibers, in Innovative Biofibers from Renewable Resources. Springer Berlin Heidelberg: Berlin, Heidelberg, pp. 99-109. Svensson, 2022, Turning food waste to antibacterial and biocompatible fungal chitin/chitosan monofilaments, Int. J. Biol. Macromol., 209, 618, 10.1016/j.ijbiomac.2022.04.031 Tamura, 2004, Preparation of chitosan filament applying new coagulation system, Carbohydr. Polym., 56, 205, 10.1016/j.carbpol.2004.02.003 Tan, 2022, Effect of squid cartilage chitosan molecular structure on the properties of its monofilament as an absorbable surgical suture, Polymers (Basel), 14, 10.3390/polym14071306 Yudin, 2014, Wet spinning of fibers made of chitosan and chitin nanofibrils, Carbohydr. Polym., 108, 176, 10.1016/j.carbpol.2014.02.090 Zamani, A., Taherzadeh, M., 2010. Production of low molecular weight chitosan by hot dilute sulfuric acid, 2010. 5(3): p. 11.