Biocompatible fibers from fungal and shrimp chitosans for suture application
Tài liệu tham khảo
Ávila Filho, 2019, Comparison between poliglecaprone and chitosan absorbable sutures in laparorrhaphy and cecorrhaphy in rabbits, J. Biomed. Mater. Res. B Appl. Biomater., 107, 2102, 10.1002/jbm.b.34303
Costa Da Silva, M., et al., 2020. Biodegradable polymeric wires: monofilament and multifilament. Mater. Res. Innov, 24(3): p. 166-170 10.1080/14328917.2019.1622256.
da Silva, 2019, N-acetyl-D-glucosamine-loaded chitosan filaments biodegradable and biocompatible for use as absorbable surgical suture materials, Materials, 12, 1807, 10.3390/ma12111807
Dresvyanina, 2013, Influence of spinning conditions on properties of chitosan fibers, Fibre Chem., 44, 280, 10.1007/s10692-013-9446-8
East, 1993, Wet spinning of chitosan and the acetylation of chitosan fibers, J. Appl. Polym. Sci., 50, 1773, 10.1002/app.1993.070501013
El-Tahlawy, 2006, Chitosan: Aspects of fiber spinnability, J. Appl. Polym. Sci., 100, 1162, 10.1002/app.23201
Islam, 2017, Chitin and chitosan: structure, properties and applications in biomedical engineering, J. Polym. Environ., 25, 854, 10.1007/s10924-016-0865-5
Karthik, 2019, Sustainable Biopolymers in Textiles: An Overview, 1435
Knaul, 1998, Improvements in the drying process for wet-spun chitosan fibers, J. Appl. Polym. Sci., 69, 1435, 10.1002/(SICI)1097-4628(19980815)69:7<1435::AID-APP19>3.0.CO;2-S
Kuznik, 2022, Pure chitosan-based fibers manufactured by a wet spinning lab-scale process using ionic liquids, Polymers, 14, 477, 10.3390/polym14030477
Mohammadkhani, 2021, New solvent and coagulating agent for development of chitosan fibers by wet spinning, Polymers, 13, 2121, 10.3390/polym13132121
Muñoz, 2015, Extraction of chitosan from Aspergillus niger mycelium and synthesis of hydrogels for controlled release of betahistine, React. Funct. Polym., 91–92, 1, 10.1016/j.reactfunctpolym.2015.03.008
Muthu, 2017, Introduction, 1
Nakayama, 2020, Dependence of water-permeable chitosan membranes on chitosan molecular weight and alkali treatment, Membranes, 10, 351, 10.3390/membranes10110351
Nawawi, 2019, Nanomaterials derived from fungal sources—is it the new hype?, Biomacromolecules, 21, 30, 10.1021/acs.biomac.9b01141
Paulin, 2020, +Brettanomyces bruxellensis displays variable susceptibility to chitosan treatment in wine, Front. Microbiol., 11
Reddy, N., Yang, Y., 2015. Chitosan Fibers, in Innovative Biofibers from Renewable Resources. Springer Berlin Heidelberg: Berlin, Heidelberg, pp. 99-109.
Svensson, 2022, Turning food waste to antibacterial and biocompatible fungal chitin/chitosan monofilaments, Int. J. Biol. Macromol., 209, 618, 10.1016/j.ijbiomac.2022.04.031
Tamura, 2004, Preparation of chitosan filament applying new coagulation system, Carbohydr. Polym., 56, 205, 10.1016/j.carbpol.2004.02.003
Tan, 2022, Effect of squid cartilage chitosan molecular structure on the properties of its monofilament as an absorbable surgical suture, Polymers (Basel), 14, 10.3390/polym14071306
Yudin, 2014, Wet spinning of fibers made of chitosan and chitin nanofibrils, Carbohydr. Polym., 108, 176, 10.1016/j.carbpol.2014.02.090
Zamani, A., Taherzadeh, M., 2010. Production of low molecular weight chitosan by hot dilute sulfuric acid, 2010. 5(3): p. 11.