Biocompatibility of hydroxyapatite coatings deposited by pulse electrodeposition technique on the Nitinol superelastic alloy

Materials Science and Engineering: C - Tập 76 - Trang 278-286 - 2017
F. Marashi-Najafi1, J. Khalil-Allafi1,2, M.R. Etminanfar1,2
1Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 5133511996 Tabriz, Iran
2Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran

Tài liệu tham khảo

Thanh, 2013, Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel, Mater. Sci. Eng. C, 33, 2037, 10.1016/j.msec.2013.01.018 Etminanfar, 2016, Endothelialization and the bioactivity of Ca-P coatings of different Ca/P stoichiometry electrodeposited on the Nitinol superelastic alloy, Mater. Sci. Eng. C, 62, 28, 10.1016/j.msec.2016.01.036 Chen, 2004, Bioactive niti shape memory alloy used as bone bonding implants, Mater. Sci. Eng. C, 24, 497, 10.1016/j.msec.2003.11.001 Khalil-Allafi, 2010, Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications, Mater. Sci. Eng. C, 30, 1112, 10.1016/j.msec.2010.06.007 Shablovskaya, 2009, The influence of surface oxides on the distribution and release of nickel from Nitinol wires, Biomaterials, 30, 468, 10.1016/j.biomaterials.2008.10.014 Shabalovskaya, 2003, Surface conditions of Nitinol wires, tubing, and as-cast alloys. The effect of chemical etching, aging in boiling water and heat treatment, J. Biomed. Mater. Res. B Appl. Biomater, 625, 193, 10.1002/jbm.b.10001 Lopez-Heredia, 2007, An electrodeposition method of calcium phosphate coatings on titanium alloy, J. Mater. Sci. Mater. Med., 18, 381, 10.1007/s10856-006-0703-8 Katic, 2014, The potential-assisted deposition as valuable tool for producing functional apatite coatings on metallic materials, Electrochim. Acta, 127, 173, 10.1016/j.electacta.2014.01.168 Garsia-Sanz, 1997, Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques, J. Mater. Sci. Mater. Med., 8, 861, 10.1023/A:1018549720873 Tsui, 1998, Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 2: optimisation of coating properties, Biomaterials, 19, 2031, 10.1016/S0142-9612(98)00104-5 Zhitomirsky, 1997, Electrophoretic deposition of hydroxyapatite, J. Mater. Sci. Mater. Med., 8, 213, 10.1023/A:1018587623231 Ma, 2003, Electrophoretic deposition of porous hydroxyapatite scaffold, Biomaterials, 20, 3505, 10.1016/S0142-9612(03)00203-5 Montenero, 2000, Sol-gel derived hydroxyapatite coatings on titanium substrate, J. Mater. Sci., 35, 2791, 10.1023/A:1004738900778 Hsieh, 2001, Phase purity of sol–gel-derived hydroxyapatite ceramic, Biomaterials, 22, 2601, 10.1016/S0142-9612(00)00448-8 Venugopal, 2010, Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering, Phil. Trans. R. Soc. A, 368, 2065, 10.1098/rsta.2010.0012 Cui, 1997, Highly adhesive hydroxyapatite coatings on titanium alloy formed by ion beam assisted deposition, J. Mater. Sci. Mater. Med., 8, 403, 10.1023/A:1018597320022 Etminanfar, 2016, On the electrodeposition of Ca-P coatings on Nitinol alloy: a comparison between different surface modification methods, J. Mater. Eng. Perform., 25, 466, 10.1007/s11665-015-1876-4 Bir, 2012, Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates, Appl. Surf. Sci., 258, 7021, 10.1016/j.apsusc.2012.03.158 Gopi, 2012, A comparative study on the direct and pulsed current electrodeposition of hydroxyapatite coatings on surgical grade stainless steel, Surf. Coat. Technol., 206, 2859, 10.1016/j.surfcoat.2011.12.011 Huang, 2000, A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings, J. Mater. Sci. Mater. Med., 11, 667, 10.1023/A:1008934522363 Shirkhanzadeh, 1998, Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes, J. Mater. Sci. Mater. Med., 9, 67, 10.1023/A:1008838813120 Etminanfar, 2016, On the electrocrystallization of pure hydroxyapatite nanowalls on Nitinol alloy using a bipolar pulsed current, J. Alloys Compd., 678, 546, 10.1016/j.jallcom.2016.03.268 Drevet, 2010, Effects of pulsed current and H2O2 amount on the composition of electrodeposited calcium phosphate coatings, Mater. Charact., 61, 786, 10.1016/j.matchar.2010.04.016 Chen, 2007, Pulsed electrodeposition of hydroxyapatite on titanium substrate in solution containing hydrogen peroxide, Trans. Nonferrous Metals Soc. China, 17, 617, 10.1016/S1003-6326(07)60144-7 Pie, 2014, Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition, Appl. Surf. Sci., 295, 71, 10.1016/j.apsusc.2014.01.009 Eliaz, 2009, The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells, Acta Biomater., 5, 3178, 10.1016/j.actbio.2009.04.005 Monchau, 2002, In vitro studies of human and rat osteoclast activity on hydroxyapatite, b-tricalcium phosphate, calcium carbonate, Biomol. Eng., 19, 143, 10.1016/S1389-0344(02)00023-0 Webb, 1998, Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization, J. Biomed. Mater. Res., 41, 422, 10.1002/(SICI)1097-4636(19980905)41:3<422::AID-JBM12>3.0.CO;2-K Kokubo, 2006, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27, 2907, 10.1016/j.biomaterials.2006.01.017 Misra, 2010, Biological significance of nanograined/ultrafine-grained structures: interaction with fibroblasts, Acta Biomater., 6, 3339, 10.1016/j.actbio.2010.01.034 Sadat-Shojai, 2012, Hydrothermal processing of hydroxyapatite nanoparticles—a Taguchi experimental design approach, J. Cryst. Growth, 361, 73, 10.1016/j.jcrysgro.2012.09.010 Koutsopoulos, 2002, Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods, J. Biomed. Mater. Res., 62, 600, 10.1002/jbm.10280 Xiao, 2013, Hydrothermal preparation of nanocarbonated hydroxyapatite crystallites, Mater. Sci. Technol., 24, 1199, 10.1179/174328407X161088 Lin, 2010, Electrodeposition of hydroxyapatite coating on CoNiCrMo substrate in dilute solution, Surf. Coat. Technol., 204, 3205, 10.1016/j.surfcoat.2010.03.020 Goudarzi, 2014, Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO2 structures: corrosion and sintering temperature, Appl. Surf. Sci., 301, 250, 10.1016/j.apsusc.2014.02.055 Wan, 2015, The effects of pulse electrodeposition parameters on morphology and formation of dual-layer Si-doped calcium phosphate coating on AZ31 alloy, Ceram. Int., 41, 787, 10.1016/j.ceramint.2014.09.003 Lotfi, 2013 Zeng, 1999, Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces, Biomaterials, 20, 377, 10.1016/S0142-9612(98)00184-7 Ma, 2009, Hydroxyapatite: hexagonal or monoclinic?, Cryst. Growth Des., 9, 2991, 10.1021/cg900156w Arima, 2007, Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers, Biomaterials, 28, 3074, 10.1016/j.biomaterials.2007.03.013 Espinar, 2011, Reduction of Ni release and improvement of the friction behaviour of NiTi orthodontic archwires by oxidation treatments, J. Mater. Sci. Mater. Med., 22, 1119, 10.1007/s10856-011-4292-9 Meleti, 2000, Inorganic phosphate induces apoptosis of osteoblast-like cells in culture, Bone, 27, 359, 10.1016/S8756-3282(00)00346-X Eriksson, 2004, Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3weeks in bone, Biomaterials, 25, 4759, 10.1016/j.biomaterials.2003.12.006 Balaur, 2005, Wetting behaviour of layers of TiO2 nanotubes with different diameters, J. Mater. Chem., 15, 4488, 10.1039/b509672c Wolansky, 1999, Apparent contact angles on rough surfaces: the Wenzel equation revisited, Colloids Surf. A Physicochem. Eng. Asp., 156, 381, 10.1016/S0927-7757(99)00098-9 Whyman, 2008, The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chem. Phys. Lett., 450, 355, 10.1016/j.cplett.2007.11.033 Bormashenko, 2006, Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces, Langmuir, 22, 9982, 10.1021/la061622m Feng, 2004, Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion, Biomaterials, 25, 3421, 10.1016/j.biomaterials.2003.10.044 Zhu, 2003, Characterization of hydrothermally treated anodic oxides containing Ca and P on titanium, J. Mater. Sci. Mater. Med., 14, 629, 10.1023/A:1024079109073 Solouk, 2011, Surface modification of POSS-nanocomposite biomaterials using reactive oxygen plasma treatment for cardiovascular surgical implant applications, Biotechnol. Appl. Biochem., 58, 147, 10.1002/bab.22 Li, 1991, The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layer in vitro, J. Mater. Sci. Mater. Med., 3, 149 Park, 2006, Bioactivity of calcium phosphate coatings prepared by electrodeposition in a modified simulated body fluid, Mater. Lett., 60, 2573, 10.1016/j.matlet.2005.07.091