Biocompatibility of hydroxyapatite coatings deposited by pulse electrodeposition technique on the Nitinol superelastic alloy
Tài liệu tham khảo
Thanh, 2013, Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel, Mater. Sci. Eng. C, 33, 2037, 10.1016/j.msec.2013.01.018
Etminanfar, 2016, Endothelialization and the bioactivity of Ca-P coatings of different Ca/P stoichiometry electrodeposited on the Nitinol superelastic alloy, Mater. Sci. Eng. C, 62, 28, 10.1016/j.msec.2016.01.036
Chen, 2004, Bioactive niti shape memory alloy used as bone bonding implants, Mater. Sci. Eng. C, 24, 497, 10.1016/j.msec.2003.11.001
Khalil-Allafi, 2010, Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications, Mater. Sci. Eng. C, 30, 1112, 10.1016/j.msec.2010.06.007
Shablovskaya, 2009, The influence of surface oxides on the distribution and release of nickel from Nitinol wires, Biomaterials, 30, 468, 10.1016/j.biomaterials.2008.10.014
Shabalovskaya, 2003, Surface conditions of Nitinol wires, tubing, and as-cast alloys. The effect of chemical etching, aging in boiling water and heat treatment, J. Biomed. Mater. Res. B Appl. Biomater, 625, 193, 10.1002/jbm.b.10001
Lopez-Heredia, 2007, An electrodeposition method of calcium phosphate coatings on titanium alloy, J. Mater. Sci. Mater. Med., 18, 381, 10.1007/s10856-006-0703-8
Katic, 2014, The potential-assisted deposition as valuable tool for producing functional apatite coatings on metallic materials, Electrochim. Acta, 127, 173, 10.1016/j.electacta.2014.01.168
Garsia-Sanz, 1997, Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques, J. Mater. Sci. Mater. Med., 8, 861, 10.1023/A:1018549720873
Tsui, 1998, Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 2: optimisation of coating properties, Biomaterials, 19, 2031, 10.1016/S0142-9612(98)00104-5
Zhitomirsky, 1997, Electrophoretic deposition of hydroxyapatite, J. Mater. Sci. Mater. Med., 8, 213, 10.1023/A:1018587623231
Ma, 2003, Electrophoretic deposition of porous hydroxyapatite scaffold, Biomaterials, 20, 3505, 10.1016/S0142-9612(03)00203-5
Montenero, 2000, Sol-gel derived hydroxyapatite coatings on titanium substrate, J. Mater. Sci., 35, 2791, 10.1023/A:1004738900778
Hsieh, 2001, Phase purity of sol–gel-derived hydroxyapatite ceramic, Biomaterials, 22, 2601, 10.1016/S0142-9612(00)00448-8
Venugopal, 2010, Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering, Phil. Trans. R. Soc. A, 368, 2065, 10.1098/rsta.2010.0012
Cui, 1997, Highly adhesive hydroxyapatite coatings on titanium alloy formed by ion beam assisted deposition, J. Mater. Sci. Mater. Med., 8, 403, 10.1023/A:1018597320022
Etminanfar, 2016, On the electrodeposition of Ca-P coatings on Nitinol alloy: a comparison between different surface modification methods, J. Mater. Eng. Perform., 25, 466, 10.1007/s11665-015-1876-4
Bir, 2012, Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates, Appl. Surf. Sci., 258, 7021, 10.1016/j.apsusc.2012.03.158
Gopi, 2012, A comparative study on the direct and pulsed current electrodeposition of hydroxyapatite coatings on surgical grade stainless steel, Surf. Coat. Technol., 206, 2859, 10.1016/j.surfcoat.2011.12.011
Huang, 2000, A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings, J. Mater. Sci. Mater. Med., 11, 667, 10.1023/A:1008934522363
Shirkhanzadeh, 1998, Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes, J. Mater. Sci. Mater. Med., 9, 67, 10.1023/A:1008838813120
Etminanfar, 2016, On the electrocrystallization of pure hydroxyapatite nanowalls on Nitinol alloy using a bipolar pulsed current, J. Alloys Compd., 678, 546, 10.1016/j.jallcom.2016.03.268
Drevet, 2010, Effects of pulsed current and H2O2 amount on the composition of electrodeposited calcium phosphate coatings, Mater. Charact., 61, 786, 10.1016/j.matchar.2010.04.016
Chen, 2007, Pulsed electrodeposition of hydroxyapatite on titanium substrate in solution containing hydrogen peroxide, Trans. Nonferrous Metals Soc. China, 17, 617, 10.1016/S1003-6326(07)60144-7
Pie, 2014, Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition, Appl. Surf. Sci., 295, 71, 10.1016/j.apsusc.2014.01.009
Eliaz, 2009, The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells, Acta Biomater., 5, 3178, 10.1016/j.actbio.2009.04.005
Monchau, 2002, In vitro studies of human and rat osteoclast activity on hydroxyapatite, b-tricalcium phosphate, calcium carbonate, Biomol. Eng., 19, 143, 10.1016/S1389-0344(02)00023-0
Webb, 1998, Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization, J. Biomed. Mater. Res., 41, 422, 10.1002/(SICI)1097-4636(19980905)41:3<422::AID-JBM12>3.0.CO;2-K
Kokubo, 2006, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27, 2907, 10.1016/j.biomaterials.2006.01.017
Misra, 2010, Biological significance of nanograined/ultrafine-grained structures: interaction with fibroblasts, Acta Biomater., 6, 3339, 10.1016/j.actbio.2010.01.034
Sadat-Shojai, 2012, Hydrothermal processing of hydroxyapatite nanoparticles—a Taguchi experimental design approach, J. Cryst. Growth, 361, 73, 10.1016/j.jcrysgro.2012.09.010
Koutsopoulos, 2002, Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods, J. Biomed. Mater. Res., 62, 600, 10.1002/jbm.10280
Xiao, 2013, Hydrothermal preparation of nanocarbonated hydroxyapatite crystallites, Mater. Sci. Technol., 24, 1199, 10.1179/174328407X161088
Lin, 2010, Electrodeposition of hydroxyapatite coating on CoNiCrMo substrate in dilute solution, Surf. Coat. Technol., 204, 3205, 10.1016/j.surfcoat.2010.03.020
Goudarzi, 2014, Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO2 structures: corrosion and sintering temperature, Appl. Surf. Sci., 301, 250, 10.1016/j.apsusc.2014.02.055
Wan, 2015, The effects of pulse electrodeposition parameters on morphology and formation of dual-layer Si-doped calcium phosphate coating on AZ31 alloy, Ceram. Int., 41, 787, 10.1016/j.ceramint.2014.09.003
Lotfi, 2013
Zeng, 1999, Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces, Biomaterials, 20, 377, 10.1016/S0142-9612(98)00184-7
Ma, 2009, Hydroxyapatite: hexagonal or monoclinic?, Cryst. Growth Des., 9, 2991, 10.1021/cg900156w
Arima, 2007, Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers, Biomaterials, 28, 3074, 10.1016/j.biomaterials.2007.03.013
Espinar, 2011, Reduction of Ni release and improvement of the friction behaviour of NiTi orthodontic archwires by oxidation treatments, J. Mater. Sci. Mater. Med., 22, 1119, 10.1007/s10856-011-4292-9
Meleti, 2000, Inorganic phosphate induces apoptosis of osteoblast-like cells in culture, Bone, 27, 359, 10.1016/S8756-3282(00)00346-X
Eriksson, 2004, Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3weeks in bone, Biomaterials, 25, 4759, 10.1016/j.biomaterials.2003.12.006
Balaur, 2005, Wetting behaviour of layers of TiO2 nanotubes with different diameters, J. Mater. Chem., 15, 4488, 10.1039/b509672c
Wolansky, 1999, Apparent contact angles on rough surfaces: the Wenzel equation revisited, Colloids Surf. A Physicochem. Eng. Asp., 156, 381, 10.1016/S0927-7757(99)00098-9
Whyman, 2008, The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chem. Phys. Lett., 450, 355, 10.1016/j.cplett.2007.11.033
Bormashenko, 2006, Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces, Langmuir, 22, 9982, 10.1021/la061622m
Feng, 2004, Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion, Biomaterials, 25, 3421, 10.1016/j.biomaterials.2003.10.044
Zhu, 2003, Characterization of hydrothermally treated anodic oxides containing Ca and P on titanium, J. Mater. Sci. Mater. Med., 14, 629, 10.1023/A:1024079109073
Solouk, 2011, Surface modification of POSS-nanocomposite biomaterials using reactive oxygen plasma treatment for cardiovascular surgical implant applications, Biotechnol. Appl. Biochem., 58, 147, 10.1002/bab.22
Li, 1991, The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layer in vitro, J. Mater. Sci. Mater. Med., 3, 149
Park, 2006, Bioactivity of calcium phosphate coatings prepared by electrodeposition in a modified simulated body fluid, Mater. Lett., 60, 2573, 10.1016/j.matlet.2005.07.091