Biocompatibility and biodegradability of Mg–Sr alloys: The formation of Sr-substituted hydroxyapatite

Acta Biomaterialia - Tập 9 Số 2 - Trang 5319-5330 - 2013
Mosayeb Bornapour1, Naser Muja2, Dominique Shum‐Tim3, Marta Cerruti4, Mihriban Pekguleryuz1
1Light Metals and Advanced Magnesium Materials, Mining & Materials Engineering, McGill University, Montreal, QC, Canada H3A 2B2
2Laboratory of Biomaterials, Mining & Materials Engineering, McGill University, Montreal, QC, Canada H3A 2B2
3Department of Cardiac Surgery, McGill University, Montreal, QC, Canada H3H 1P3
4Biointerface Lab, Mining & Materials Engineering, McGill University, Montreal, QC, Canada H3A 2B2

Tóm tắt

Từ khóa


Tài liệu tham khảo

Staiger, 2006, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27, 1728, 10.1016/j.biomaterials.2005.10.003

Kannan, 2008, In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid, Biomaterials, 29, 2306, 10.1016/j.biomaterials.2008.02.003

Witte, 2006, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials, 27, 1013, 10.1016/j.biomaterials.2005.07.037

Witte, 2007, Biodegradable magnesium-hydroxyapatite metal matrix composites, Biomaterials, 28, 2163, 10.1016/j.biomaterials.2006.12.027

Moravej, 2011, Biodegradable metals for cardiovascular stent application: interests and new opportunities, Int J Mol Sci, 12, 4250, 10.3390/ijms12074250

Witte, 2010, The history of biodegradable magnesium implants: a review, Acta Biomater, 6, 1680, 10.1016/j.actbio.2010.02.028

Kirkland, 2012, Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations, Acta Biomater, 8, 925, 10.1016/j.actbio.2011.11.014

Kraus, 2012, Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone, Acta Biomater, 8, 1230, 10.1016/j.actbio.2011.11.008

Gu, 2010, Corrosion fatigue behaviors of two biomedical Mg alloys-AZ91D and WE43-in simulated body fluid, Acta Biomater, 6, 4605, 10.1016/j.actbio.2010.07.026

Heublein, 2003, Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?, Heart, 89, 651, 10.1136/heart.89.6.651

Zeng, 2008, Progress and challenge for magnesium alloys as biomaterials, Adv Eng Mater, 10, B3, 10.1002/adem.200800035

Waksman, 2006, Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries, Catheter Cardiovasc Interv, 68, 607, 10.1002/ccd.20727

Zartner, 2005, First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby, Catheter Cardiovasc Interv, 66, 590, 10.1002/ccd.20520

Paul Erne, 2006, The road to bioabsorbable stents: reaching clinical reality?, Cardiovasc Intervent Radiol, 29, 5

Erbel, 2007, Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial, Lancet, 369, 1869, 10.1016/S0140-6736(07)60853-8

Di Mario, 2004, Drug-eluting bioabsorbable magnesium stent, J Interv Cardiol, 17, 391, 10.1111/j.1540-8183.2004.04081.x

McBride, 1938, Absorbable metal in bone surgery – a further report on the use of magnesium alloys, J Am Med Assoc, 111, 2464, 10.1001/jama.1938.02790530018007

Song, 2009, Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid, Mater Sci Eng C, 29, 1039, 10.1016/j.msec.2008.08.026

Zreiqat, 2002, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, J Biomed Mater Res, 62, 175, 10.1002/jbm.10270

Yun, 2009, Biodegradable Mg corrosion and osteoblast cell culture studies, Mater Sci Eng C: Mater Biol Appl, 29, 1814, 10.1016/j.msec.2009.02.008

Gu, 2009, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 30, 484, 10.1016/j.biomaterials.2008.10.021

Witte, 2008, Degradable biomaterials based on magnesium corrosion, Curr Opin Solid State Mater Sci, 12, 63, 10.1016/j.cossms.2009.04.001

Rettig, 2008, Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids, J Biomed Mater Res A, 85A, 167, 10.1002/jbm.a.31550

Gu, 2009, A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate, Acta Biomater, 5, 2790, 10.1016/j.actbio.2009.01.048

Zhang, 2010, Research on an Mg–Zn alloy as a degradable biomaterial, Acta Biomater, 6, 626, 10.1016/j.actbio.2009.06.028

Wang, 2010, In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process, Acta Biomater, 6, 1743, 10.1016/j.actbio.2009.12.009

Gu, 2012, In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal, Acta Biomater, 8, 2360, 10.1016/j.actbio.2012.02.018

Fan Y, Wu G, Zhai C. Effect of strontium on mechanical properties and corrosion resistance of AZ91D. Materials Science Forum [0255-5476] 2007;546–549:567–70.

Dahl, 2001, Incorporation and distribution of strontium in bone, Bone, 28, 446, 10.1016/S8756-3282(01)00419-7

Marie, 2005, Strontium ranelate: a novel mode of action optimizing bone formation and resorption, Osteoporos Int, 16, S7, 10.1007/s00198-004-1753-8

Taylor, 1985, Therapeutic uses of trace-elements, Clin Endocrinol Metab, 14, 703, 10.1016/S0300-595X(85)80013-X

Zhang, 2011, Effects of strontium in modified biomaterials, Acta Biomater, 7, 800, 10.1016/j.actbio.2010.08.031

Bigi, 2007, Strontium-substituted hydroxyapatite nanocrystals, Inorg Chim Acta, 360, 1009, 10.1016/j.ica.2006.07.074

Nielsen, 2004, The biological role of strontium, Bone, 35, 583, 10.1016/j.bone.2004.04.026

Suganthi, 2011, Fibrous growth of strontium substituted hydroxyapatite and its drug release, Mater Sci Eng C: Mater Biol Appl, 31, 593, 10.1016/j.msec.2010.11.025

Zeng, 2006, Effect of strontium on the microstructure, mechanical properties, and fracture behavior of AZ31 magnesium alloy, Metall Mater Trans A, 37A, 1333, 10.1007/s11661-006-1085-8

Brar, 2012, Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials, J Mech Behav Biomed Mater, 7, 87, 10.1016/j.jmbbm.2011.07.018

Li, 2008, The development of binary Mg–Ca alloys for use as biodegradable materials within bone, Biomaterials, 29, 1329, 10.1016/j.biomaterials.2007.12.021

Wan, 2008, Preparation and characterization of a new biomedical magnesium–calcium alloy, Mater Des, 29, 2034, 10.1016/j.matdes.2008.04.017

Hermawan, 2010, Developments in metallic biodegradable stents, Acta Biomater, 6, 1693, 10.1016/j.actbio.2009.10.006

Barth, 1996, Paired comparison of vascular wall reactions to Palmaz stents, Strecker tantalum stents, and Wallstents in canine iliac and femoral arteries, Circulation, 93, 2161, 10.1161/01.CIR.93.12.2161

Salam, 1994, Reaction to injury following balloon angioplasty and intravascular stent placement in the canine femoral-artery, Am Surg, 60, 353

Song, 2006, Magnesium as a possible degradable bio-compatible material, 359

Hassel, 2006, Investigation of the mechanical properties and the corrosion behavior of low alloyed magnesium–calcium-alloys for use as absorable biomaterial in the implant technique, 359

Song, 2007, Control of biodegradation of biocompatable magnesium alloys, Corros Sci, 49, 1696, 10.1016/j.corsci.2007.01.001

Witte, 2005, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26, 3557, 10.1016/j.biomaterials.2004.09.049

Ren, 2007, Preliminary study of biodegradation of AZ31B magnesium alloy, Mater Sci, 1, 3

Li, 2004, Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid, Surf Coat Technol, 185, 92, 10.1016/j.surfcoat.2004.01.004

Song, 1999, Corrosion mechanisms of magnesium alloys, Adv Eng Mater, 1, 11, 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N

Takenaka, 2007, Improvement of corrosion resistance of magnesium metal by rare earth elements, Electrochim Acta, 53, 117, 10.1016/j.electacta.2007.03.027

Aljarrah, 2008, Thermodynamic modelling of the Mg–Ca, Mg–Sr, Ca–Sr and Mg–Ca–Sr systems using the modified quasichemical model, Calphad, 32, 240, 10.1016/j.calphad.2007.09.001

Song, 2008, Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application, Mater Lett, 62, 3276, 10.1016/j.matlet.2008.02.048

Song, 2010, Electrodeposition of Ca–P coatings on biodegradable Mg alloy: in vitro biomineralization behavior, Acta Biomater, 6, 1736, 10.1016/j.actbio.2009.12.020

Wang, 2008, Corrosion process of pure magnesium in simulated body fluid, Mater Lett, 62, 2181, 10.1016/j.matlet.2007.11.045

Geng, 2009, The preparation, cytocompatibility, and in vitro biodegradation study of pure beta-TCP on magnesium, J Mater Sci: Mater Med, 20, 1149

Xu, 2009, In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy, Biomaterials, 30, 1512, 10.1016/j.biomaterials.2008.12.001

Landis, 1984, X-ray photoelectron spectroscopy applied to gold-decorated mineral standards of biological interest, J Vac Sci Technol A, 2, 4, 10.1116/1.572680

Han, 2011, A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold, Nanotechnology, 22, 275603, 10.1088/0957-4484/22/27/275603

Pereiro, 2012, Pulsed laser deposition of strontium-substituted hydroxyapatite coatings, Appl Surf Sci, 258, 9192, 10.1016/j.apsusc.2012.04.063

Kalita, 2007, Nanocrystalline calcium phosphate ceramics in biomedical engineering, Mater Sci Eng C, 27, 441, 10.1016/j.msec.2006.05.018

Hanawa T, Ducheyne P, Nancollas GH, Legros RZ, Lemons JE, Kasemo B. Titanium and its oxide film – a substrate for formation of apatite. In: Bone–biomaterial interface, vol. 6; 1991. p. 49–61.

Demri, 1995, XPS study of some calcium compounds, J Mater Process Technol, 55, 311, 10.1016/0924-0136(95)02023-3

Wang, 2011, In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg–Zn–Ca alloy for bone implant application, Colloids Surf B, 88, 254, 10.1016/j.colsurfb.2011.06.040

Guo, 2009, Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering, Acta Biomater, 5, 268, 10.1016/j.actbio.2008.07.018

Blumenthal, 1981, Formation and structure of Ca-deficient hydroxyapatite, Calcif Tissue Int, 33, 111, 10.1007/BF02409422

Vandoveren, 1980, XPS spectra of Ca, Sr, Ba and their oxides, J Electron Spectrosc Relat Phenom, 21, 265, 10.1016/0368-2048(80)85055-9

Seyama, 1984, X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent-cations, J Chem Soc: Faraday Trans I, 80, 237

Kung, 2010, Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation, J Alloy Compd, 508, 384, 10.1016/j.jallcom.2010.08.057

Pramatarova, 2005, Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces, Eur Cell Mater, 9, 9, 10.22203/eCM.v009a02

Gu, 2001, The experimental study of Sr-HAP on reconstructing mandibular bone defect, Zhonghua Kou Qiang Yi Xue Za Zhi, 36, 262

<http://www.lenntech.com/periodic/water/strontium/strontium-and-water.htm>.

Kabata-Pendai, 2007

Kirkland, 2011, Performance-driven design of biocompatible Mg alloys, JOM, 63, 28, 10.1007/s11837-011-0089-z